We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Suppose that $G$ is a second countable, locally compact Hausdorff groupoid with abelian stabiliser subgroups and a Haar system. We provide necessary and sufficient conditions for the groupoid ${C}^{\ast } $-algebra to have Hausdorff spectrum. In particular, we show that the spectrum of ${C}^{\ast } (G)$ is Hausdorff if and only if the stabilisers vary continuously with respect to the Fell topology, the orbit space ${G}^{(0)} / G$ is Hausdorff, and, given convergent sequences ${\chi }_{i} \rightarrow \chi $ and ${\gamma }_{i} \cdot {\chi }_{i} \rightarrow \omega $ in the dual stabiliser groupoid $\widehat{S}$ where the ${\gamma }_{i} \in G$ act via conjugation, if $\chi $ and $\omega $ are elements of the same fibre then $\chi = \omega $.
We show how to construct a topological groupoid directly from an inverse semigroup and prove that it is isomorphic to the universal groupoid introduced by Paterson. We then turn to a certain reduction of this groupoid. In the case of inverse semigroups arising from graphs (respectively, tilings), we prove that this reduction is the graph groupoid introduced by Kumjian \et (respectively, the tiling groupoid of Kellendonk). We also study the open invariant sets in the unit space of this reduction in terms of certain order ideals of the underlying inverse semigroup. This can be used to investigate the ideal structure of the associated reduced $C^\ast$-algebra.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.