We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The current study prospectively examines the intra-uterine hypothesis by comparing maternal, paternal and grandparental lineage influences on children's diet and also maternal–child aggregation patterns during pregnancy and early childhood.
Design
Prenatal dietary information was available for expectant mothers, fathers and up to four grandparents through a detailed validated semi-quantitative FFQ. At 6-year follow-up, when children averaged 5 years of age, dietary information was re-collected for mothers and a subset of maternal grandmothers using the same FFQ. Child's FFQ version was used for children. Anthropometric and sociodemographic variables were also collected.
Settings
Three-generation familial cohort representative of the contemporary Irish national population.
Subjects
Children aged 5 years (n 567) and their parents and grandparents.
Results
Associations for energy, macronutrient and fibre intakes were compared using Pearson's correlations, intra-class correlations (ICC) and linear regression models, adjusted for energy and potential confounders. Significant, moderate-strength positive correlations were observed for nutrient intakes in children's nuclear families (ICC (range) = 0·22–0·28). The father–child associations (r (range) = 0·13–0·20) were weaker than the mother–child associations (r (range) = 0·14–0·33). In general, associations were stronger for maternal postnatal intake–child intake than for maternal prenatal intake–child intake, except for percentage of energy from fat (adjusted β = 0·16, 95 % CI 0·05, 0·26; P = 0·004), which was stronger for maternal prenatal intake, specifically in non-breast-fed children (adjusted β = 0·28, 95 % CI 0·12, 0·44; P = 0·001). Among all grandparents, correlations were significant only for maternal grandmother–mother pairs (r (range) = 0·10–0·36). Significant positive ICC were observed for nutrient intakes of maternal grandmother–mother–child triads (ICC (range) = 0·12–0·27), not found in paternal lines.
Conclusions
These findings suggest that maternal-environment programming influences dietary intake.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.