We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
Online ordering will be unavailable from 17:00 GMT on Friday, April 25 until 17:00 GMT on Sunday, April 27 due to maintenance. We apologise for the inconvenience.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Daily rhythms enable organisms to adapt to daily fluctuations in environmental factors. Do organisms still exhibit 24-h rhythms when living in habitats without obvious daily cycles in external signals? To answer this question, we measured the heart rates of six Adélie penguin (Pygoscelis adeliae) chicks on Inexpressible Island during the polar day between 15 and 21 January 2019. Averaged heart rates were between 186 and 233 beats/min for individual chicks. Both fast Fourier transformation and autocorrelation were employed to assess the daily rhythmicity. Based on fast Fourier transformation, a significant contribution of daily rhythm in heart rate variation was found only in one individual. Small effect size of significant autocorrelation coefficients was found in two individuals, while there was no significant autocorrelation coefficient for 24-h time lag in four other individuals. In summary, no prevailing daily rhythm of heart rate was found in these Adélie penguin chicks. We propose that the lack of daily rhythm in Adélie penguin chicks could be an adaptation to the local environment in the polar regions, but that the adaptive value thereof remains to be investigated.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.