Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-26T17:38:00.937Z Has data issue: false hasContentIssue false

Lack of daily heart rate rhythms in Adélie penguin chicks during the polar day

Published online by Cambridge University Press:  10 February 2020

Canwei Xia
Affiliation:
Ministry of Education Key Laboratory for Biodiversity and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, China
Yanyun Zhang*
Affiliation:
Ministry of Education Key Laboratory for Biodiversity and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, China
*
Author for correspondence: Yanyun Zhang, Email: [email protected]

Abstract

Daily rhythms enable organisms to adapt to daily fluctuations in environmental factors. Do organisms still exhibit 24-h rhythms when living in habitats without obvious daily cycles in external signals? To answer this question, we measured the heart rates of six Adélie penguin (Pygoscelis adeliae) chicks on Inexpressible Island during the polar day between 15 and 21 January 2019. Averaged heart rates were between 186 and 233 beats/min for individual chicks. Both fast Fourier transformation and autocorrelation were employed to assess the daily rhythmicity. Based on fast Fourier transformation, a significant contribution of daily rhythm in heart rate variation was found only in one individual. Small effect size of significant autocorrelation coefficients was found in two individuals, while there was no significant autocorrelation coefficient for 24-h time lag in four other individuals. In summary, no prevailing daily rhythm of heart rate was found in these Adélie penguin chicks. We propose that the lack of daily rhythm in Adélie penguin chicks could be an adaptation to the local environment in the polar regions, but that the adaptive value thereof remains to be investigated.

Type
Research Article
Copyright
© The Author(s), 2020. Published by Cambridge University Press.

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ardura, J., Andres, J., Aldana, J., Revilla, M. A., & Aragon, M. P. (1997). Heart rate biorhythm changes during the first three months of life. Biology of the Neonate, 72, 94101.CrossRefGoogle ScholarPubMed
Benloucif, S., Guico, M. J., Reid, K. J., Wolfe, L. F., L’Hermite-Baleriaux, M., & Zee, P. C. (2005). Stability of melatonin and temperature as circadian phase markers and their relation to sleep times in humans. Journal of Biological Rhythms, 20, 178188.CrossRefGoogle ScholarPubMed
Bishop, C. M., Spivey, R. J., Hawkes, L. A., Batbayar, N., Chua, B., Frappell, P. B., … Butler, P. J. (2015). The roller coaster flight strategy of bar-headed geese conserves energy during Himalayan migrations. Science, 347, 250254.CrossRefGoogle ScholarPubMed
Bornemann, H., Mohr, E., Plötz, J., & Krause, G. (1998). The tide as zeitgeber for Weddell seals. Polar Bioogy, 20, 396403.CrossRefGoogle Scholar
Bulla, M., Valcu, M., Dokter, A. M., Dondua, A. G., Kosztolanyi, A., Rutten, A. L., … Kempenaers, B. (2016). Unexpected diversity in socially synchronized rhythms of shorebirds. Nature, 540, 109113.CrossRefGoogle ScholarPubMed
Case, T. J. (1978). On the evolution and adaptive significance of postnatal growth rates in the terrestrial vertebrates. The Quarterly Review of Biology, 53, 243282.CrossRefGoogle ScholarPubMed
Cockrem, J. F. (1990). Circadian rhythms in Antarctic penguins. In Davis, L. S., & Darby, J. T. (Eds.), Penguin Biology (pp. 319344). San Diego, CA: Academic Press.Google Scholar
Cockrem, J. F. (1991a). Plasma melatonin in the Adelie penguin (Pygoscelis adeliae) under conditions daylight in Antarctica. Journal of Pineal Research, 10, 28.CrossRefGoogle ScholarPubMed
Cockrem, J. F. (1991b). Circadian rhythms of plasma melatonin in the Adelie penguin (Pygoscelis adeliae) in constant dim light and artificial photoperiods. Journal of Pineal Research, 11, 6369.CrossRefGoogle ScholarPubMed
Culik, B. (1992). Diving heart rates in Adélie penguins (Pygoscelis adeliae). Comparative Biochemistry and Physiology A-Molecular & Integrative Physiology, 102, 487490.CrossRefGoogle Scholar
Culik, B., Adelung, D., Heise, M., Wilson, R. P., Coria, N. R., & Spairani, H. J. (1989). In situ heart rate and activity of incubating Adélie penguins (Pygoscelis adeliae). Polar Biology, 9, 365370.CrossRefGoogle Scholar
Dominoni, D. M., Akesson, S., Klaassen, R., Spoelstra, K., & Bulla, M. (2017). Methods in field chronobiology. Philosophical Transactions of the Royal Society B-Biological Sciences, 372, 20160247.CrossRefGoogle ScholarPubMed
Edgar, R. S., Green, E. W., Zhao, Y., van Ooijen, G., Olmedo, M., Qin, X., … Reddy, A. B. (2012). Peroxiredoxins are conserved markers of circadian rhythms. Nature, 485, 459465.CrossRefGoogle ScholarPubMed
Emslie, S. D., Coats, L., & Licht, K. (2007). A 45,000 yr record of Adelie penguins and climate change in the Ross Sea, Antarctica. Geology, 35, 6164.CrossRefGoogle Scholar
Fisher, R. A. (1929). Tests of significance in harmonic analysis. Proceedings of the Royal Society of London Series a-Containing Papers of a Mathematical and Physical Character, 125, 5459.Google Scholar
Giannetto, C., Arfuso, F., Fazio, F., Giudice, E., Panzera, M., & Piccione, G. (2017). Rhythmic function of body temperature, breathing and heart rates in newborn goats and sheep during the first hours of life. Journal of Veterinary Behavior, 18, 2936.CrossRefGoogle Scholar
Giese, M., Handsworth, R., & Stephenson, R. (1999). Measuring resting heart rates in penguins using an artificial egg. Journal of Field Ornithology, 70, 4954.Google Scholar
Glotzbach, S. F., Edgar, D. M., Boeddiker, M., & Ariagno, R. L. (1994). Biological rhythmicity in normal infants during the first 3 months of life. Pediatrics, 94, 482488.CrossRefGoogle ScholarPubMed
Golombek, D. A., Calcagno, J. A., & Luquet, C. M. (1991). Circadian activity rhythm of the chinstrap penguin of Isla Media Luna, South Shetland Islands, Argentine Antarctica. Journal of Field Ornithology, 62, 293298.Google Scholar
Green, J. A., White, C. R., & Butler, P. J. (2005). Allometric estimation of metabolic rate from heart rate in penguins. Comparative Biochemistry and Physiology A-Molecular & Integrative Physiology, 142, 478484.CrossRefGoogle ScholarPubMed
Grilli, M. G., Libertelli, M., & Montalti, D. (2011). Diet of south polar skua chicks in two areas of sympatry with brown skua. Waterbirds, 34, 495498.CrossRefGoogle Scholar
Groscolas, R., Viera, V., Guerin, N., Handrich, Y., & Cote, S. D. (2010). Heart rate as a predictor of energy expenditure in undisturbed fasting and incubating penguins. Journal of Experimental Biology, 213, 153160.CrossRefGoogle ScholarPubMed
Gwinner, E., & Brandstatter, R. (2001). Complex bird clocks. Philosophical Transactions of the Royal Society B-Biological Sciences, 356, 18011810.CrossRefGoogle ScholarPubMed
Harmer, S. L. (2009). The Circadian system in higher plants. Annual Reviews of Plant Biology, 60, 357377.CrossRefGoogle ScholarPubMed
He, H., Cheng, X., Li, X., Zhu, R., Hui, F., Wu, W., … Tang, J. (2017). Aerial photography based census of Adelie penguin and its application in CH4 and N2O budget estimation in Victoria Land, Antarctic. Scientific Reports 7, 12942.CrossRefGoogle Scholar
Heideman, M. T., Johnson, D. H., & Burrus, C. S. (1985). Gauss and the history of the fast Fourier transform. Archives of the History of the Exact Sciences, 34, 265277.CrossRefGoogle Scholar
Jones, T. M., Brawn, J. D., & Ward, M. P. (2018). Development of activity rates in fledgling songbirds: when do young birds begin to behave like adults? Behaviour, 155, 337350.CrossRefGoogle Scholar
Kumar, V., Singh, B. P., & Rani, S. (2004). The bird clock: a complex, multi-oscillatory and highly diversified system. Biological Rhythm Research, 35, 121144.CrossRefGoogle Scholar
Lakshman, A., Shindey, R., & Sharma, V. K. (2017). To be or not to be rhythmic? A review of studies on organisms inhabiting constant environments. Biological Rhythm Research, 48, 677691.Google Scholar
Le Maho, Y., Whittington, J. D., Hanuise, N., Pereira, L., Boureau, M., Brucker, M., … Le Bohec, C. (2014). Rovers minimize human disturbance in research on wild animals. Nature Methods, 11, 12421244.CrossRefGoogle ScholarPubMed
Li, X. Y., & Kane, M. (2019). PML: penalized multi-band learning for circadian rhythm analysis using actigraphy. R package version 1.0. https://CRAN.R-project.org/package=PML.Google Scholar
Miche, F., Vivienroels, B., Pevet, P., Spehner, C., Robin, J. P., & Lemaho, Y. (1991). Daily pattern of melatonin secretion in an Antarctic bird, the emperor penguin, Aptenodytes forsteri: seasonal variations, effect of constant illumination and of administration of isoproterenol or propranolol. General and Comparative Endocrinology, 84, 249263.CrossRefGoogle ScholarPubMed
Moriya, K., Hochel, J., Pearson, J. T., & Tazawa, H. (1999). Cardiac rhythms in developing chicks. Comparative Biochemistry and Physiology A-Molecular and Integrative Physiology, 124, 461468.CrossRefGoogle ScholarPubMed
Müller-Schwarze, D. (1968). Circadian rhythms of activity in the Adélie penguin (Pygoscelis adeliae) during the austral summer. Antarctic Bird Studies, 12, 133149.Google Scholar
Penney, R. L. (1967). Molt in Adelie penguin. Auk, 84, 6171.CrossRefGoogle Scholar
Piccione, G., Giudice, E., Fazio, F., & Mortola, J. P. (2010). The daily rhythm of body temperature, heart and respiratory rate in newborn dogs. Journal of Comparative Physiology B, 180, 895904.CrossRefGoogle ScholarPubMed
Pittendrigh, C. S. (1993). Temporal organization: reflections of a Darwinian clock-watcher. Annual Review of Physiology, 55, 1654.CrossRefGoogle ScholarPubMed
Quintana, R. D., Pratolongo, P. D., Agraz, J. L., Benitez, O., & Mengual, A. R. (2005). Activity rhythms at a gentoo penguin (Pygoscelis papua) colony at Cierva Point, Antarctic Peninsula. Notornis, 52, 133137.Google Scholar
R Core Development Team. (2019). R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing.Google Scholar
Steiger, S. S., Valcu, M., Spoelstra, K., Helm, B., Wikelski, M., & Kempenaers, B. (2013). When the sun never sets: diverse activity rhythms under continuous daylight in free-living arctic-breeding birds. Proceedings of the Royal Society B-Biological Sciences, 280, 20131016.CrossRefGoogle ScholarPubMed
Tazawa, H., Akiyama, R., & Moriya, K. (2002). Development of cardiac rhythms in birds. Comparative Biochemistry and Physiology a-Molecular & Integrative Physiology, 132, 675689.CrossRefGoogle ScholarPubMed
Vandewalle, G., Middleton, B., Rajaratnam, S. M. W., Stone, B. M., Thorleifsdottir, B., Arendt, J., & Dijk, D. J. (2007). Robust circadian rhythm in heart rate and its variability: influence of exogenous melatonin and photoperiod. Journal of Sleep Research, 16, 148155.CrossRefGoogle ScholarPubMed
Vleck, C. M., & Van Hook, J. A. (2002). Absence of daily rhythms of prolactin and corticosterone in Adelie penguins under continuous daylight. Condor, 104, 667671.CrossRefGoogle Scholar
Williams, C. T., Barnes, B. M., & Buck, C. L. (2015). Persistence, entrainment, and function of circadian rhythms in polar vertebrates. Physiology, 30, 8696.CrossRefGoogle ScholarPubMed
Wilson, D. J., Lyver, P. O. B., Greene, T. C., Whitehead, A. L., Dugger, K. M., Karl, B. J., … Ainley, D. G. (2017). South polar skua breeding populations in the Ross Sea assessed from demonstrated relationship with Adelie penguin numbers. Polar Biology, 40, 577592.CrossRefGoogle Scholar
Wilson, R. P., Culik, B., Coria, N. R., Adelung, D., & Spairani, H. J. (1989). Foraging rhythms in Adélie penguins (Pygoscelis adeliae) at hope bay, Antarctica; determination and control. Polar Biology, 10, 161165.CrossRefGoogle Scholar
Woelfle, M. A., Yan, O. Y., Phanvijhitsiri, K., & Johnson, C. H. (2004). The adaptive value of circadian clocks: an experimental assessment in cyanobacteria. Current Biology, 14, 14811486.CrossRefGoogle ScholarPubMed
Yeates, G. W. (1971). Diurnal activity in the Adelie penguin (Pygoscelis adeliae) at Cape Royds, Antarctica. Journal of Natural History, 5, 103112.CrossRefGoogle Scholar
Yerushalmi, S., & Green, R. M. (2009). Evidence for the adaptive significance of circadian rhythms. Ecology Letters, 12, 970981.CrossRefGoogle ScholarPubMed
Yue, S., Pilon, P., Phinney, B., & Cavadias, G. (2002). The influence of autocorrelation on the ability to detect trend in hydrological series. Hydrological Processes, 16, 18071829.CrossRefGoogle Scholar
Supplementary material: File

Xia and Zhang supplementary material

Xia and Zhang supplementary material 1

Download Xia and Zhang supplementary material(File)
File 743.9 KB
Supplementary material: Image

Xia and Zhang supplementary material

Xia and Zhang supplementary material 2

Download Xia and Zhang supplementary material(Image)
Image 249.4 KB