The potential of antibodies raised against insulin-like growth factor-1 (IGF-1) as a treatment to enhance the anabolic actions of IGF-1 has been demonstrated in both rodent and ruminant models. We investigated whether treatment of genetically normal rats with anti-IGF-1 immunoglobulin (Ig, raised in cattle) would enhance growth and if anti-IGF-1 Ig treatment would ameliorate live-weight loss in genetically normal rats offered a severely protein-restricted diet. Scatchard analysis was used to characterise ammonium sulphate precipitated bovine anti-IGF-1 Ig. Anti-IGF-1 Ig binding to 125I-IGF-1 yielded an almost linear Scatchard plot, with a Hill co-efficient of 0.951 ± 0.012, indicating a single class of IGF-1 binding sites. The affinity of anti-IGF-1 Ig for IGF-1 was 2.14 ± 0.66 × 109 l/mol. The non-immune Ig preparation did not bind IGF-1. Rats were offered either a diet with a normal protein level (20%) or protein restricted (4% protein), and each dietary group was further treated with twice-daily i.p. injections of either diluent phosphate buffered saline, non-immune Ig or anti-IGF-1 Ig. Dietary protein level had a significant effect on live-weight gain, but there was no effect of non-immune Ig or anti-IGF-1 Ig on live-weight gain. Treatment with anti-IGF-1 Ig prevented the significant depression of cumulative dietary intake observed in diluent, and non-immune Ig treated groups offered the 4% protein diet. The cumulative dietary intake of the anti-IGF-1 Ig treated, 4% dietary protein group did not differ significantly from those of the groups offered the 20% protein diet. In addition, within the 4% dietary protein group, rats treated with non-immune Ig exhibited a cumulative feed intake that was intermediate between that of the diluent treated and anti-IGF-1 Ig treated groups (P < 0.05). Size exclusion chromatography was used to characterise in vitro125I-IGF-1 binding in end-point plasma from each treatment group. In comparison to control groups, anti-IGF-1 Ig treatment resulted in substantially increased 125I-IGF-1 binding in the 30 to 40 kDa region and a concomitant reduction in elution of free 125I-IGF-1. Protein restriction markedly depressed IGF-1 binding at ∼150 kDa in the plasma of diluent and non-immune Ig treated groups. Anti-IGF-1 Ig treatment was effective in preventing this decrease in ∼150 kDa binding. Thus, anti-IGF-1 Ig appears to have a beneficial effect on dietary intake in protein-restricted rats, which is associated with induced changes in IGF-1 binding profiles in plasma.