Haláp Hill is an eroded remnant of young (∼3 Ma) alkaline basalt in the western part of the Bakony–Balaton Highland Volcanic Field, Tapolca, Hungary. Cavities in the basalt contain miarolitic minerals (augite, apatite, magnetite, plagioclase and sanidine), zeolites (analcime, chabazite-Ca, chabazite-Na, garronite, gismondine, gmelinite-Ca, gmelinite-Na, gobbinsite, gonnardite-Na, natrolite, mesolite, phillipsite-Ca, phillipsite-K, phillipsite-Na and scolecite) and other secondary minerals (calcite, smectite-group minerals, goethite and Mn-oxides). Chabazite-Na, gmelinite-Ca, gonnardite-Na, phillipsite-Na and phillipsite-K are reported from Haláp Hill for the first time. The Ca-rich and Na-rich zeolites and abundant calcite were produced by hydrothermal alteration. Mineral assemblages were characterized by X-ray diffraction, differential thermal analysis, energy-dispersive spectrometry and wavelength-dispersive spectrometry. The secondary mineral assemblages were probably formed as a result of low-temperature hydrothermal activity at 50—100°C. Miarolitic minerals crystallized first in cavities in the basalt; they were followed by zeolite-group minerals and calcite. Analcime and phillipsite with or without chabazite/gmelinite/garronite or gobbinsite were the first zeolite-group minerals to crystallize; gonnardite-Na and natrolite crystallized later from Na-rich fluids. Calcite and smectite-group minerals crystallized continually. This paragenetic sequence is similar to others which have been reported in basalt from other localities in the Balaton Highland, Iceland and Northern Ireland.