The isolation of a Glycine max cytochrome P450 monooxygenase (P450) cDNA designated CYP71A10 that conferred linuron resistance to laboratory-grown, transgenic Nicotiana tabacum seedlings was previously reported. A nonsegregating transgenic N. tabacum line has been established that possesses two independent copies of the G. max CYP71A10 transgene. Five-week-old progeny plants of this selected line were grown in a controlled environmental chamber and treated with linuron using either pretransplant incorporated (PTI) or postemergence (POST) applications. CYP71A10-transformed N. tabacum was more tolerant to linuron than the wild type for both application methods. The transgenic N. tabacum line tolerated an approximately 16-fold and 12-fold higher rate of linuron than wild-type N. tabacum when the herbicide was applied PTI or POST, respectively. These results provide evidence that plant-derived P450 genes can be employed effectively to confer herbicide resistance to transgenic plants.