To meet the accuracy, integrity, continuity and availability required for many navigation applications the Locata technology can provide an alternative to satellite-based navigation in difficult Global Navigation Satellite System (GNSS) signal environments, especially for applications in port areas and in constricted waterways. Unlike GNSS constellations, a LocataNet – a local constellation of LocataLites – can be designed specifically for different environments to avoid signal blockages, interference or poor geometry. By using Locata technology, the optimal performance within particular areas can always be guaranteed. This paper demonstrates the influence of LocataNet configuration on the reliability and integrity of the Locata positioning system. The performance of the Locata system is investigated using the Receiver Autonomous Integrity Monitoring (RAIM) concept. Fault Detection and Exclusion (FDE) algorithm performance is validated through the computation of the Dilution of Precision (DOP), the Horizontal Protection Level (HPL) and the correlation coefficient between two failure modes that can indicate the quality of fault identification. The experimental analysis shows that a good configuration of LocataLites will enhance the accuracy and reliability of the navigation system.