The intercalation of the cationic surfactant cetyltrimethylammonium (C16TMA) into the interlayer of an acid-activated clay in the presence of different anions has been studied in detail. When Br or OH anions were used, the basal spacing increased significantly, the increase being related to the loading concentration of the surfactant solution. For intercalated compounds prepared from the hydroxide form, the basal spacing at room temperature varied from 1.6 to 3.8 nm. However, for organoclays prepared from the surfactant bromide, the basal spacing is almost loading- independent (1.9 nm). The use of hydroxide and bromide at higher pH is crucial to intercalating larger amounts of C16TMA cations and, hence, to improving the exfoliation of the silicate sheets. Magic-angle spinning 13C nuclear magnetic resonance spectroscopy indicates that the intercalated surfactants exhibit a significant degree of gauche conformation. According to in situ powder X-ray diffraction, an increase of the basal spacing to 4.08 nm is observed at intermediate temperatures of 50 to 150°C for organoclay with an initial basal spacing of 3.7 nm. At higher temperatures, decomposition of the surfactant occurs and the basal spacing decreases to ~1.4 nm.