We study a single-server queue in which the server takes a vacation whenever the system becomes empty. The service and vacation times and the arrival process are all assumed to be mutually independent. The successive service times and the vacation times each form independent, identically distributed sequences with general distributions. A new class of non-renewal arrival processes is introduced. As special cases, it includes the Markov-modulated Poisson process and the superposition of phase-type renewal processes.
Algorithmically tractable equations for the distributions of the waiting times at an arbitrary time and at arrivals, as well as for the queue length at an arbitrary time, at arrivals, and at departures are established. Some factorizations, which are known for the case of renewal input, are generalized to this new framework and new factorizations are obtained. The algorithmic implementation of these results is discussed.