Let $\left( R,\,m \right)$ be a non-zero commutative Noetherian local ring (with identity) and let $M$ be a non-zero finitely generated $R$-module. In this paper for any $\mathfrak{p}\,\in \,\text{Spec}\left( R \right)$ we show that
1$$\text{injdi}{{\text{m}}_{{{R}_{\mathfrak{p}}}}}\,H_{\mathfrak{p}{{R}_{\mathfrak{p}}}}^{i-\dim\left( {R}/{\mathfrak{p}}\; \right)}\left( {{M}_{\mathfrak{p}}} \right)$$ and 1$$\text{f}{{\text{d}}_{{{R}_{\mathfrak{p}}}}}H_{\mathfrak{p}}^{i-\dim\left( {R}/{\mathfrak{p}}\; \right)}\left( {{M}_{\mathfrak{p}}} \right)$$
are bounded from above by $\text{injdi}{{\text{m}}_{R}}\,H_{\text{m}}^{i}\left( M \right)$ and $\text{f}{{\text{d}}_{R}}\,H_{\text{m}}^{i}\left( M \right)$ respectively, for all integers $i\,\ge \,\dim\left( {R}/{\mathfrak{p}}\; \right)$.