In this paper asymptotic results in a long-term growth rate portfolio optimization model under both fixed and proportional transaction costs are obtained. More precisely, the convergence of the model when the fixed costs tend to 0 is investigated. A suitable limit model with purely proportional costs is introduced and the convergence of optimal boundaries, asymptotic growth rates, and optimal risky fraction processes is rigorously proved. The results are based on an in-depth analysis of the convergence of the solutions to the corresponding Hamilton–Jacobi–Bellman equations.