Let
{{S}_{k}}(\Gamma ) be the space of holomorphic cusp forms of even integral weight
k for the full modular group. Let
{{\lambda }_{f}}(n) and
{{\lambda }_{g}}(n) be the
n-th normalized Fourier coefficients of two holomorphic Hecke eigencuspforms
f(z),\,g(z)\,\in \,{{S}_{k}}(\Gamma ), respectively. In this paper we are able to show the following results about higher moments of Fourier coefficients of holomorphic cusp forms.
(i)For any
\varepsilon \,>\,0, we have
\sum\limits_{n\le x}{\lambda _{f}^{5}(n){{\ll }_{f,\varepsilon }}}{{x}^{\frac{15}{16}+\varepsilon }}\text{and}\sum\limits_{n\le x}{\lambda _{f}^{7}(n){{\ll }_{f,\varepsilon }}}{{x}^{\frac{63}{64}+\varepsilon }}.(ii)If
\text{sy}{{\text{m}}^{3\,}}{{\pi }_{f}}\,\ncong \,\text{sy}{{\text{m}}^{3\,}}{{\pi }_{g}}\,, then for any
\varepsilon \,>\,0, we have
\sum\limits_{n\le x}{\lambda _{f}^{3}(n)\lambda _{g}^{3}(n){{\ll }_{f,\varepsilon }}}{{x}^{\frac{31}{32}+\varepsilon }};If
\text{sy}{{\text{m}}^{2}}\,{{\pi }_{f}}\,\ncong \,\text{sy}{{\text{m}}^{2}}\,{{\pi }_{g}}, then for any
\varepsilon \,>\,0, we have
\sum\limits_{n\le x}{\lambda _{f}^{4}(n)\lambda _{g}^{2}(n)}=cx\log x+{c}'x+{{O}_{f,\varepsilon }}({{x}^{\frac{31}{32}+\varepsilon }});If
\text{sy}{{\text{m}}^{2}}\,{{\pi }_{f}}\,\ncong \,\text{sy}{{\text{m}}^{2}}\,{{\pi }_{g}} and
\text{sy}{{\text{m}}^{4}}{{\pi }_{f}}\,\ncong \,\text{sy}{{\text{m}}^{4}}{{\pi }_{g}}, then for any
\varepsilon \,>\,0, we have
\sum\limits_{n\le x}{\lambda _{f}^{4}(n)\lambda _{g}^{4}(n)}=xP(\log x)+{{O}_{f,\varepsilon }}({{x}^{\frac{127}{128}+\varepsilon }}),where
P\left( x \right) is a polynomial of degree 3.