We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
Online ordering will be unavailable from 17:00 GMT on Friday, April 25 until 17:00 GMT on Sunday, April 27 due to maintenance. We apologise for the inconvenience.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The use of clays as industrial catalysts requires optimization of modification methods during their preparation. The objective of this paper was to improve the traditional method of bentonite impregnation using ultrasound. For this purpose, three series of samples with Fe3+/clay molar ratios of 0.6–11 mmol/g were prepared, which differed in terms of preparation procedure. The first batch of samples was subjected to the conventional method of impregnation, where total synthesis of catalysts took 4 h. The other two series of samples were prepared with impregnation improved by ultrasound: preparation of Fe-polycation (5 min) and then its incorporation with a clay suspension for 5 and 10 min. The effect of clay preparation method on the catalyst stability and efficiency in a heterogeneous Fenton process was studied on aqueous solutions of synthetic Reactive Blue 4 dye. The catalysts prepared by the conventional method and the improved ultrasound method achieved high efficacy (91–97%, respectively), but their stability was different in the Fenton process. The catalysts prepared using ultrasound for 10 min exhibited greatest stability in the Fenton process. The catalysts synthesized with different Fe loadings displayed an increase in specific surface area and mesoporosity. Samples prepared by the improved impregnation method are comparable in terms of their characteristics with their counterparts prepared by the conventional method. It is thus possible to reduce the time taken by traditional catalyst synthesis by using optimized exposure time to ultrasonic waves.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.