We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Ramsey algebras are an attempt to investigate Ramsey spaces generated by algebras in a purely combinatorial fashion. Previous studies have focused on the basic properties of Ramsey algebras and a few specific examples. In this article, we study the properties of Ramsey algebras from a structural point of view. For instance, we will see that isomorphic algebras have the same Ramsey algebraic properties, but elementarily equivalent algebras need not be so, as expected. We also answer an open question about Cartesian products of Ramsey algebras.
The generic ultrafilter ${\cal G}_2 $ forced by ${\cal P}\left( {\omega \times \omega } \right)/\left( {{\rm{Fin}} \otimes {\rm{Fin}}} \right)$ was recently proved to be neither maximum nor minimum in the Tukey order of ultrafilters ([1]), but it was left open where exactly in the Tukey order it lies. We prove ${\cal G}_2 $ that is in fact Tukey minimal over its projected Ramsey ultrafilter. Furthermore, we prove that for each ${\cal G}_2 $, the collection of all nonprincipal ultrafilters Tukey reducible to the generic ultrafilter ${\cal G}_k $ forced by ${\cal P}\left( {\omega ^k } \right)/{\rm{Fin}}^{ \otimes k} $ forms a chain of length k. Essential to the proof is the extraction of a dense subset εk from (Fin⊗k)+ which we prove to be a topological Ramsey space. The spaces εk, k ≥ 2, form a hierarchy of high dimensional Ellentuck spaces. New Ramsey-classification theorems for equivalence relations on fronts on εk are proved, extending the Pudlák–Rödl Theorem for fronts on the Ellentuck space, which are applied to find the Tukey and Rudin–Keisler structures below ${\cal G}_k $.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.