This paper proposes an efficient algorithm for computing finger forces involved in a three-dimensional objects grasp. Effective finger force computation is necessary for the successful manipulation on an object by a multifingered robot hand. Based on previous works, the stability forces are computed as a solution of an optimization problem. This optimization problem is mapped into a linear quadratic problem under inequality constraints. We propose a new approach for this problem: the problem is solved as a minimal distance calculation problem in the forces space. The results obtained by simulation demonstrate the efficiency and the numerical stability of the method. This method is used with the LMS mechanical hand as a component of the global control strategy dedicated to the object manipulation.