We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We consider the constrained-degree percolation model in a random environment (CDPRE) on the square lattice. In this model, each vertex v has an independent random constraint $\kappa_v$ which takes the value $j\in \{0,1,2,3\}$ with probability $\rho_j$. The dynamics is as follows: at time $t=0$ all edges are closed; each edge e attempts to open at a random time $U(e)\sim \mathrm{U}(0,1]$, independently of all the other edges. It succeeds if at time U(e) both its end vertices have degrees strictly smaller than their respective constraints. We obtain exponential decay of the radius of the open cluster of the origin at all times when its expected size is finite. Since CDPRE is dominated by Bernoulli percolation, this result is meaningful only if the supremum of all values of t for which the expected size of the open cluster of the origin is finite is larger than $\frac12$. We prove this last fact by showing a sharp phase transition for an intermediate model.
We introduce a new 1-dependent percolation model to describe and analyze the spread of an epidemic on a general directed and locally finite graph. We assign a two-dimensional random weight vector to each vertex of the graph in such a way that the weights of different vertices are independent and identically distributed, but the two entries of the vector assigned to a vertex need not be independent. The probability for an edge to be open depends on the weights of its end vertices, but, conditionally on the weights, the states of the edges are independent of each other. In an epidemiological setting, the vertices of a graph represent the individuals in a (social) network and the edges represent the connections in the network. The weights assigned to an individual denote its (random) infectivity and susceptibility, respectively. We show that one can bound the percolation probability and the expected size of the cluster of vertices that can be reached by an open path starting at a given vertex from above by the corresponding quantities for independent bond percolation with a certain density; this generalizes a result of Kuulasmaa (1982). Many models in the literature are special cases of our general model.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.