We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
Online ordering will be unavailable from 17:00 GMT on Friday, April 25 until 17:00 GMT on Sunday, April 27 due to maintenance. We apologise for the inconvenience.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
To use information inherent in the seasonal change in daylength, an insect must be able to measure daylength, distinguish long from short days, count the days, store that information in the brain, and then act on that information at the correct developmental stage to engage the diapause program. This chapter explains the nature of the photoperiodic signal, when it is received, where this information is stored, and how that information triggers the hormonal response. Formal models and molecular approaches examining the role of circadian clock genes consistently point to a circadian basis for the photoperiodic clock. Thermoperiod sometimes substitutes for photoperiod, suggesting alternative pathways for evoking the diapause program. Some tropical insects rely exclusively on temperature or rainfall as environmental signal regulating diapause. Input from hosts can also be important for plant-feeders and parasitoids. The diapause decision is sometimes relegated to the mother, thus requiring an intriguing mechanism for the transfer of environmental information across generations.
Mammals have an endogenous timing system in the suprachiasmatic nuclei (SCN) of the hypothalamic region of the brain. This internal clock system is composed of an intracellular feedback loop that drives the expression of molecular components and their constitutive protein products to oscillate over a period of about 24 h (hence the term ‘circadian’). These circadian oscillations bring about rhythmic changes in downstream molecular pathways and physiological processes such as those involved in nutrition and metabolism. It is now emerging that the molecular components of the clock system are also found within the cells of peripheral tissues, including the gastrointestinal tract, liver and pancreas. The present review examines their role in regulating nutritional and metabolic processes. In turn, metabolic status and feeding cycles are able to feed back onto the circadian clock in the SCN and in peripheral tissues. This feedback mechanism maintains the integrity and temporal coordination between various components of the circadian clock system. Thus, alterations in environmental cues could disrupt normal clock function, which may have profound effects on the health and well-being of an individual.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.