In this research work, the maximum Cartesian workspace of a Tricept parallel robot with two rotational and one translational degrees of freedom was investigated. Generally, the Cartesian workspace identifies the maximum size of a work-piece, specifying its cubic x, y and z dimensions, on which the milling machine could perform operations. However, the workspace of a robot can be considered in its task space, such as ψ × θ × z for the Tricept Parallel Kinematic Mechanism (PKM). A novel homogeneous Jacobian matrix which transforms joint space velocity vector into end-effector Cartesian velocity vector has been generated named as a Cartesian Jacobian matrix. Using the indices derived from the homogeneous Cartesian Jacobian matrix, i.e. the maximum singular values and local conditioning indices, the manipulator is designed to reach the Cartesian workspace with rapid positioning rates as well as with singularity avoidance.