Carbon nanotube (CNT) reinforced A356 aluminum alloys cast nanocomposites containing lower CNT contents were successfully fabricated where the way of introducing diluted Al–8 wt% CNT master nanocomposite in A356 melts was used. The differential thermal analysis and x-ray diffraction results showed that aluminum carbide phases (Al4C3) were formed before Al melting. The formation of Al4C3 was then proved to improve the wettability of CNTs during Al melting. Effect of CNT addition on microstructure and mechanical properties of CNTs/A356 nanocomposites were investigated by optical microscopy, scanning electron microscopy, transmission electron microscopy, and universal tensile testing machine. The results showed that CNTs (<0.4 wt%) were well distributed in the CNTs/A356 nanocomposites. CNTs could greatly refine the microstructure of A356 alloy. The mechanical properties of CNTs/A356 nanocomposites were also enhanced by CNT addition. Fractography analysis revealed that CNTs were distributed uniformly throughout the fracture surface.