Polyunsaturated fatty acids (FA) regulate genes involved in lipid metabolism. The effects of polyunsaturated FA on the transcription factor adipocyte determination and differentiation-dependent factor (ADD) 1 and fatty acid synthase (FAS) mRNA in differentiating porcine adipocytes were measured using a stromal vascular cell culture system. Porcine stromal vascular cells were isolated from subcutaneous adi-pose tissues and plated in Dulbecco's modified Eagle's medium (DMEM)–nutrient mixture F-12 Ham (F-12) plus fetal bovine serum (100 ml/l) for 24 h. Then cells were differentiated in DMEM–F12 plus insulin, hydrocortisone and transferrin without or with polyunsaturated FA at 6·25, 25·00 or 100·00 μm. The ADD1 mRNA was decreased by 100·00 μm-arachidonic acid, 6·25 to 100·00 μm-docosahexaenoic acid or cis-9,trans-11-conjugated linoleic acid. The polyunsaturated FA reduced the transcription rate of FAS, but not of ADD1. All three polyunsaturated FA accelerated degradation of ADD1 and FAS mRNA to reduce the abundance of ADD1 and FAS mRNA. Results also showed that polyunsaturated FA inhibit the ADD1 expression, not only of mRNA concentration, but also of mature ADD1 protein concentration, suggesting an overall reduction of ADD1 function by polyunsaturated FA. Our present experiments demonstrate that polyunsaturated FA regulate the gene expression of ADD1 and enzymes involved in lipid metabolism in porcine adipocytes.