We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
Online ordering will be unavailable from 17:00 GMT on Friday, April 25 until 17:00 GMT on Sunday, April 27 due to maintenance. We apologise for the inconvenience.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This paper present a nonlinear, model-based control of flexible link robots. The control task is formulated requiring rigid joints variables to track reference time-varying trajectory and elastic deflection to be damped. The stability and robustness properties of the control scheme are analyzed from a passive energy consideration. A direct adaptive version is also proposed. Extensive evaluation of this approach is performed using experimental validations involving a single-flexible-link and a two-flexible-link horizontal robot. Experimental results show significant performances of the controller under relatively severe working conditions: 700% payload to arm ratio and 20% elastic deflection ratio at highest acceleration stages.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.