Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-20T03:23:28.530Z Has data issue: false hasContentIssue false

A nonlinear model-based control of flexible robots

Published online by Cambridge University Press:  09 March 2009

CM. Pham
Affiliation:
ECN, Laboratoire d'Automatique, (UAR CNRS 823, 1 rue de la Noë, 44072 Nantes (France)
W. Khalil
Affiliation:
ECN, Laboratoire d'Automatique, (UAR CNRS 823, 1 rue de la Noë, 44072 Nantes (France)
C. Chevallereau
Affiliation:
ECN, Laboratoire d'Automatique, (UAR CNRS 823, 1 rue de la Noë, 44072 Nantes (France)

Summary

This paper present a nonlinear, model-based control of flexible link robots. The control task is formulated requiring rigid joints variables to track reference time-varying trajectory and elastic deflection to be damped. The stability and robustness properties of the control scheme are analyzed from a passive energy consideration. A direct adaptive version is also proposed. Extensive evaluation of this approach is performed using experimental validations involving a single-flexible-link and a two-flexible-link horizontal robot. Experimental results show significant performances of the controller under relatively severe working conditions: 700% payload to arm ratio and 20% elastic deflection ratio at highest acceleration stages.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Balas, M.J., “Trends in large space structure control theory: fondest hopes, wildest dreams”, IEEE Trans, on Automatic Control AC-27, No. 3, 522535 (1982).Google Scholar
2.Dombre, E. and Khalil, W., Modération et commande des robots (Edition Hermés, Paris, 1988).Google Scholar
3.Den Bossche, E. Van, “Etude et commande adaptive d'im bras manipulateur sample” Ph.D. Thesis (Grenoble, France, 1987).Google Scholar
4.Yurkovich, S. and Tzes, A.P., “Experiments in Identification and Control of Flexible-Link Manipulators” IEEE Control System Magazine 4146 (1990).Google Scholar
5.Yurkovich, S., Tzes, A.P., Lee, I. and Hillsley, K.L., “Control and system identification of a two-link flexible manipulators” IEEE Conf. on Robotics and Automation 16261631 (1990).Google Scholar
6.Balas, M.J., “Feedback control of flexible systemIEEE Trans, on Automatic Control AC-23, No. 4, 673679 (1978).Google Scholar
7.Kanoh, H. and Lee, H.G., “Vibration control of one link flexible arm” Proc. of the 24th IEEE Conf. on Decision and Control 11721177 (1985).CrossRefGoogle Scholar
8.Chaloub, N.G. and Ulsoy, A.G., “Control of a flexible robot arm: experimental and theoretical resultsTrans, of the ASME J. of Dynamics Systems Measurement and Control 109, 299310 (12, 1987).Google Scholar
9.De Pieri, E., Peres, P.L.D. and Abou-Kandil, H., “A robust control technique applied to large flexible space structures” Proc. of IMACS-MCTS 224228 (1991).Google Scholar
10.Siciliano, B., Yuan, B.S., Book, W.J., “Model Reference Adaptive Control of a one link flexible arm” Proc. of the 25th IEEE Conf. on Decision and Control 9195 (1986).Google Scholar
11.Wang, D. and Vidyasagar, M., “Passive control of a single flexible link” Proc. of IEEE Conf. on Robotics and Automation 14321437 (1988).Google Scholar
12.Feliu, V., Rattan, K.S., Brown, H.B. Jr., “Adaptive Control of a single link Flexible Manipulator in the presence of Joint Friction and Load Changes” Proc. of IEEE Conf. on Robotics and Automation 10361042 (1989).Google Scholar
13.Hillsley, K.L. and Yurkovitch, S., “Vibration control of a two link flexible robot arm” Proc. of IEEE Conf. on Robotics and Automation 21212126 (1991).Google Scholar
14.Pfeiffer, F. and Gebler, B., “A multi stage approach to the dynamics and control of elastic robots Proc. of IEEE Conf. on Robotics and Automation 28 (1988).Google Scholar
15.Uchiyama, M. and Konno, A., “Computed acceleration control for the vibration suppression of flexible robotic manipulators” Proc. of ICAR 126131 (1991).Google Scholar
16.De Shutter, J., Van Brussels, H., Adam, M., Froment, A. and Faillot, J.L., “Control of flexible robots using generalized non-linear decoupling” Proc. of IF AC SYROCO 98.198.6 (1988).Google Scholar
17.Chedmail, P. and Khalil, W., “Non-linear decoupling control of flexible robots” Proc. of ICAR (Springer-Vertag, 1989) pp. 138145.Google Scholar
18.Chevallereau, C. and Aoustin, Y., “Non-linear control of a 2 flexible link robot: Experimental and Theoretical comparisons” Proc. of ECC 10511056 (1991).Google Scholar
19.Siciliano, B. and Book, W.J., “A singular perturbation approach to control of lightweight flexible manipulatorsInt. J. Robotics Research 7, No. 4, 7990 (1988).Google Scholar
20.De Luca, A., Lanari, L. and Ulivi, G., “End-effector trajectory tracking in flexible arms: Comparison of approaches based on regulation theory” Int. Work, in Adaptive and Nonlinear Control: Issues in Robotics (Springer-Verlag, Berlin, 1990) pp. 190206.Google Scholar
21.Chedmail, P., “Synthèse de robots et de sites robotises. Modé1isation de robots soules” Thèse de Doctoral d'Etat, Nantes, ENSM (Jan. 1990).Google Scholar
22.Chedmail, P. and Michel, G., “Modelization of plane flexible robots” Proc. of 15th ISIR 10831090 (Sep., 1985).Google Scholar
23.Koditschek, D., “Natural motion for robot arms” Proc.of the 23rd IEEE Conf. on Decision and Control 733735 (1984).CrossRefGoogle Scholar
24.Landau, I.D. and Horowitz, R., “Synthesis of adaptive controllers for robot manipulators using a passive feedback systems approach” Proc. of IEEE Conf. on Robotics and Automation 10281033 (1988).Google Scholar
25.Pham, CM., Chedmail, P. and Gautier, M., “Determination of base parameters of flexible links manipulators” Proc. of IMACS-MCTS 524529 (1191).Google Scholar
26.Slotine, J.J., “Adaptive manipulator control: A case studyIEEE Trans, on Automatic Control AC-33, No. 11, 9951003 (1988).Google Scholar