We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We assume that human carrying capacity is determined by food availability. We propose three classes of human population dynamical models of logistic type, where the carrying capacity is a function of the food production index. We also employ an integration-based parameter estimation technique to derive explicit formulas for the model parameters. Using actual population and food production index data, numerical simulations of our models suggest that an increase in food availability implies an increase in carrying capacity, but the carrying capacity is “self-limiting” and does not increase indefinitely.
In this paper, we introduce a class of nonsmooth nonconvex optimization problems, and we propose to use a local iterative minimization-majorization (MM) algorithm to find an optimal solution for the optimization problem. The cost functions in our optimization problems are an extension of convex functions with MC separable penalty, which were previously introduced by Ivan Selesnick. These functions are not convex; therefore, convex optimization methods cannot be applied here to prove the existence of optimal minimum point for these functions. For our purpose, we use convex analysis tools to first construct a class of convex majorizers, which approximate the value of non-convex cost function locally, then use the MM algorithm to prove the existence of local minimum. The convergence of the algorithm is guaranteed when the iterative points $x^{(k)}$ are obtained in a ball centred at $x^{(k-1)}$ with small radius. We prove that the algorithm converges to a stationary point (local minimum) of cost function when the surregators are strongly convex.
We consider the nonlinear and ill-posed inverse problem where the Robin coefficient in the Laplace equation is to be estimated using the measured data from the accessible part of the boundary. Two regularisation methods are considered — viz. L2 and H1 regularisation. The regularised problem is transformed to a nonlinear least squares problem; and a suitable regularisation parameter is chosen via the normalised cumulative periodogram (NCP) curve of the residual vector under the assumption of white noise, where information on the noise level is not required. Numerical results show that the proposed method is efficient and competitive.
This paper presents a framework for compressed sensing that bridges a gap between existing theory and the current use of compressed sensing in many real-world applications. In doing so, it also introduces a new sampling method that yields substantially improved recovery over existing techniques. In many applications of compressed sensing, including medical imaging, the standard principles of incoherence and sparsity are lacking. Whilst compressed sensing is often used successfully in such applications, it is done largely without mathematical explanation. The framework introduced in this paper provides such a justification. It does so by replacing these standard principles with three more general concepts: asymptotic sparsity, asymptotic incoherence and multilevel random subsampling. Moreover, not only does this work provide such a theoretical justification, it explains several key phenomena witnessed in practice. In particular, and unlike the standard theory, this work demonstrates the dependence of optimal sampling strategies on both the incoherence structure of the sampling operator and on the structure of the signal to be recovered. Another key consequence of this framework is the introduction of a new structured sampling method that exploits these phenomena to achieve significant improvements over current state-of-the-art techniques.
Image deconvolution problems with a symmetric point-spread function arise in many areas of science and engineering. These problems often are solved by the Richardson-Lucy method, a nonlinear iterative method. We first show a convergence result for the Richardson-Lucy method. The proof sheds light on why the method may converge slowly. Subsequently, we describe an iterative active set method that imposes the same constraints on the computed solution as the Richardson-Lucy method. Computed examples show the latter method to yield better restorations than the Richardson-Lucy method and typically require less computational effort.
The duality proof of sampling localization given by Loy, Newbury, Anderssen and Davies in 2001 contains an oversight, as the classes of functions chosen do not assume the compact support. Here, it is shown how a minor change to the argument there yields a precise conclusion.
Exact analytical expressions for the inverse Laplace transforms of the functions $\frac{{{I}_{n}}\left( s \right)}{sI_{n}^{\prime }\left( s \right)}$ are obtained in the form of trigonometric series. The convergence of the series is analyzed theoretically, and it is proven that those diverge on an infinite denumerable set of points. Therefore it is shown that the inverse transforms have an infinite number of singular points. This result, to the best of the author’s knowledge, is new, as the inverse transforms of $\frac{{{I}_{n}}\left( s \right)}{sI_{n}^{\prime }\left( s \right)}$ have previously been considered to be piecewise smooth and continuous. It is also found that the inverse transforms have an infinite number of points of finite discontinuity with different left- and right-side limits. The points of singularity and points of finite discontinuity alternate, and the sign of the infinity at the singular points also alternates depending on the order $n$. The behavior of the inverse transforms in the proximity of the singular points and the points of finite discontinuity is addressed as well.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.