Let
M=(\begin {smallmatrix}\rho ^{-1} & 0 \\0 & \rho ^{-1} \\\end {smallmatrix}) be an expanding real matrix with
0<\rho <1, and let
{\mathcal D}_n=\{(\begin {smallmatrix} 0\\ 0 \end {smallmatrix}),(\begin {smallmatrix} \sigma _n\\ 0 \end {smallmatrix}),(\begin {smallmatrix} 0\\ \gamma _n \end {smallmatrix})\} be digit sets with
\sigma _n,\gamma _n\in \{-1,1\} for each
n\ge 1. Then the infinite convolution
\begin{align*}\mu_{M,\{{\mathcal D}_n\}}=\delta_{M^{-1}{\mathcal D}_1}\ast\delta_{M^{-2}{\mathcal D}_2}\ast\cdots\end{align*} is called a Moran–Sierpinski measure. We give a necessary and sufficient condition for
L^2(\,\mu _{M,\{{\mathcal D}_n\}}) to admit an infinite orthogonal set of exponential functions. Furthermore, we give the exact cardinality of orthogonal exponential functions in
L^2(\,\mu _{M,\{{\mathcal D}_n\}}) when
L^2(\,\mu _{M,\{{\mathcal D}_n\}}) does not admit any infinite orthogonal set of exponential functions based on whether
\rho is a trinomial number or not.