Writing $s\,=\,\sigma \,+\,it$ for a complex variable, it is proved that the modulus of the gamma function, $\left| \Gamma (s) \right|$, is strictly monotone increasing with respect to $\sigma $ whenever $\left| t \right|\,>\,5/4$. It is also shown that this result is false for $\left| t \right|\,\le \,1$.