Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-27T06:35:17.207Z Has data issue: false hasContentIssue false

ON ALGEBRAIC DIFFERENTIAL EQUATIONS FOR THE GAMMA FUNCTION AND $L$-FUNCTIONS IN THE EXTENDED SELBERG CLASS

Published online by Cambridge University Press:  13 March 2017

FENG LÜ*
Affiliation:
College of Science, China University of Petroleum, Qingdao, Shandong, 266580, PR China email [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

This paper concerns the problem of algebraic differential independence of the gamma function and ${\mathcal{L}}$-functions in the extended Selberg class. We prove that the two kinds of functions cannot satisfy a class of algebraic differential equations with functional coefficients that are linked to the zeros of the ${\mathcal{L}}$-function in a domain $D:=\{z:0<\text{Re}\,z<\unicode[STIX]{x1D70E}_{0}\}$ for a positive constant $\unicode[STIX]{x1D70E}_{0}$.

Type
Research Article
Copyright
© 2017 Australian Mathematical Publishing Association Inc. 

References

Bank, S. and Kaufman, R., ‘An extension of Hölder’s theorem concerning the Gamma function’, Funkcial. Ekvac. 19 (1976), 5363.Google Scholar
Hilbert, D., ‘Mathematische probleme’, Arch. Math. Phys. 1 (1901), 4463; 213–317.Google Scholar
Hölder, O., ‘Uber die Eigenschaft der 𝛤-Function, keiner algebraischen Differentialgleichung zu genügen’, Math. Ann. 28 (1887), 113.CrossRefGoogle Scholar
Kaczorowski, J. and Perelli, A., ‘On the structure of the Selberg class’, Acta Math. 182 (1999), 207241.Google Scholar
Kilbas, A. and Saigo, M., ‘A remark on asymptotics of the gamma function at infinity’, in: Study on Applications for Fractional Calculus Operators in Univalent Function Theory, RIMS Kokyuroku, 1363 (Kyoto University Research Information Repository, Kyoto, 2004), 3336.Google Scholar
Li, B. and Ye, Z., ‘Algebraic differential equations concerning the Riemann zeta function and the Euler gamma function’, Indiana Univ. Math. J. 59 (2010), 14051415.Google Scholar
Li, B. and Ye, Z., ‘On algebraic differential properties of the Riemann 𝜁-function and Euler 𝛤-function’, Complex Var. Elliptic Equ. 56 (2011), 137145.Google Scholar
Li, B. and Ye, Z., ‘Algebraic differential equations with functional coefficients concerning 𝜁 and 𝛤’, J. Differential Equations 260 (2016), 14561464.CrossRefGoogle Scholar
Markus, L., ‘Differential independence of 𝛤 and 𝜁’, J. Dynam. Differential Equations 19 (2007), 133154.CrossRefGoogle Scholar
Mordykhai-Boltovskoi, D., ‘On hypertranscendence of the function 𝜉(x, s)’, Izv. Politekh. Inst. Warsaw 2 (1914), 116.Google Scholar
Ostrowski, A., ‘Über Dirichletsche Reihen und algebraische Differentialgleichungen’, Math. Z. 8 (1920), 241298.CrossRefGoogle Scholar
Steuding, J., Value Distribution of L-Functions, Lecture Notes in Mathematics, 1877 (Springer, Berlin, 2007).Google Scholar
Titchmarsh, E., The Theory of Functions, second edn (Oxford University Press, Oxford, 1968).Google Scholar