We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Let R be a Cohen–Macaulay local K-algebra or a standard graded K-algebra over a field K with a canonical module
$\omega _R$
. The trace of
$\omega _R$
is the ideal
$\operatorname {tr}(\omega _R)$
of R which is the sum of those ideals
$\varphi (\omega _R)$
with
${\varphi \in \operatorname {Hom}_R(\omega _R,R)}$
. The smallest number s for which there exist
$\varphi _1, \ldots , \varphi _s \in \operatorname {Hom}_R(\omega _R,R)$
with
$\operatorname {tr}(\omega _R)=\varphi _1(\omega _R) + \cdots + \varphi _s(\omega _R)$
is called the Teter number of R. We say that R is of Teter type if
$s = 1$
. It is shown that R is not of Teter type if R is generically Gorenstein. In the present paper, we focus especially on zero-dimensional graded and monomial K-algebras and present various classes of such algebras which are of Teter type.
Let $X$ be a nonempty set and ${\mathcal{P}}(X)$ the power set of $X$. The aim of this paper is to identify the unital subrings of ${\mathcal{P}}(X)$ and to compute its cardinality when it is finite. It is proved that any topology $\unicode[STIX]{x1D70F}$ on $X$ such that $\unicode[STIX]{x1D70F}=\unicode[STIX]{x1D70F}^{c}$, where $\unicode[STIX]{x1D70F}^{c}=\{U^{c}\mid U\in \unicode[STIX]{x1D70F}\}$, is a unital subring of ${\mathcal{P}}(X)$. It is also shown that $X$ is finite if and only if any unital subring of ${\mathcal{P}}(X)$ is a topology $\unicode[STIX]{x1D70F}$ on $X$ such that $\unicode[STIX]{x1D70F}=\unicode[STIX]{x1D70F}^{c}$ if and only if the set of unital subrings of ${\mathcal{P}}(X)$ is finite. As a consequence, if $X$ is finite with cardinality $n\geq 2$, then the number of unital subrings of ${\mathcal{P}}(X)$ is equal to the $n$th Bell number and the supremum of the lengths of chains of unital subalgebras of ${\mathcal{P}}(X)$ is equal to $n-1$.
If $n$ and $m$ are positive integers, necessary and sufficient conditions are given for the existence of a finite commutative ring $R$ with exactly $n$ elements and exactly $m$ prime ideals. Next, assuming the Axiom of Choice, it is proved that if $R$ is a commutative ring and $T$ is a commutative $R$-algebra which is generated by a set $I$, then each chain of prime ideals of $T$ lying over the same prime ideal of $R$ has at most
${{2}^{\left| I \right|}}$
elements. A polynomial ring example shows that the preceding result is best-possible.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.