We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We prove that the opposite of the category of coalgebras for the Vietoris endofunctor on the category of compact Hausdorff spaces is monadic over $\mathsf {Set}$. We deliver an analogous result for the upper, lower, and convex Vietoris endofunctors acting on the category of stably compact spaces. We provide axiomatizations of the associated (infinitary) varieties. This can be seen as a version of Jónsson–Tarski duality for modal algebras beyond the zero-dimensional setting.
We prove that the category of Nachbin’s compact ordered spaces and order-preserving continuous maps between them is dually equivalent to a variety of algebras, with operations of at most countable arity. Furthermore, we observe that the countable bound on the arity is the best possible: the category of compact ordered spaces is not dually equivalent to any variety of finitary algebras. Indeed, the following stronger results hold: the category of compact ordered spaces is not dually equivalent to (i) any finitely accessible category, (ii) any first-order definable class of structures, and (iii) any class of finitary algebras closed under products and subalgebras. An explicit equational axiomatisation of the dual of the category of compact ordered spaces is obtained; in fact, we provide a finite one, meaning that our description uses only finitely many function symbols and finitely many equational axioms. In preparation for the latter result, we establish a generalisation of a celebrated theorem by Mundici: our result—whose proof is independent of Mundici’s theorem—asserts that the category of unital commutative distributive lattice-ordered monoids is equivalent to the category of what we call MV-monoidal algebras.
Let $L$ be a finite distributive lattice. Let $\text{Su}{{\text{b}}_{0}}(L)$ be the lattice
$$\{S\,|\,S\,\text{is}\,\text{a sublattice of }L\}\cup \{\phi \}$$
and let ${{\ell }_{*}}[\text{Su}{{\text{b}}_{0}}(L)]$ be the length of the shortest maximal chain in $\text{Su}{{\text{b}}_{0}}(L)$. It is proved that if $K$ and $L$ are non-trivial finite distributive lattices, then
Consider the quasi-variety generated by a finite algebra and assume that yields a natural duality on based on which is optimal modulo endomorphisms. We shoe that, provided satisfies certain minimality conditions, we can transfer this duality to a natural duality on based on , which is also optimal modulo endormorphisms, for any finite algebra in that has a subalgebra isomorphic to .
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.