No CrossRef data available.
Article contents
Neural networks need real-world behavior
Published online by Cambridge University Press: 06 December 2023
Abstract
Bowers et al. propose to use controlled behavioral experiments when evaluating deep neural networks as models of biological vision. We agree with the sentiment and draw parallels to the notion that “neuroscience needs behavior.” As a promising path forward, we suggest complementing image recognition tasks with increasingly realistic and well-controlled task environments that engage real-world object recognition behavior.
- Type
- Open Peer Commentary
- Information
- Copyright
- Copyright © The Author(s), 2023. Published by Cambridge University Press
References
Adolph, K. E., & Franchak, J. M. (2017). The development of motor behavior. Wiley Interdisciplinary Reviews. Cognitive Science, 8(1–2), e1430. https://doi.org/10.1002/wcs.1430CrossRefGoogle ScholarPubMed
Alsbury-Nealy, K., Wang, H., Howarth, C., Gordienko, A., Schlichting, M. L., & Duncan, K. D. (2022). OpenMaze: An open-source toolbox for creating virtual navigation experiments. Behavior Research Methods, 54, 1374–1387. https://doi.org/10.3758/s13428-021-01664-9CrossRefGoogle ScholarPubMed
Barense, M. D., Rogers, T. T., Bussey, T. J., Saksida, L. M., & Graham, K. S. (2010). Influence of conceptual knowledge on visual object discrimination: Insights from semantic dementia and MTL amnesia. Cerebral Cortex, 20(11), 2568–2582. https://doi.org/10.1093/cercor/bhq004CrossRefGoogle ScholarPubMed
Behrens, T. E. J., Muller, T. H., Whittington, J. C. R., Mark, S., Baram, A. B., Stachenfeld, K. L., & Kurth-Nelson, Z. (2018). What is a cognitive map? Organizing knowledge for flexible behavior. Neuron, 100(2), 490–509. https://doi.org/10.1016/j.neuron.2018.10.002CrossRefGoogle ScholarPubMed
Brookes, J., Warburton, M., Alghadier, M., Mon-Williams, M., & Mushtaq, F. (2020). Studying human behavior with virtual reality: The unity experiment framework. Behavior Research Methods, 52, 455–463. https://doi.org/10.3758/s13428-019-01242-0CrossRefGoogle ScholarPubMed
Cowell, R. A., Barense, M. D., & Sadil, P. S. (2019). A roadmap for understanding memory: Decomposing cognitive processes into operations and representations. eNeuro, 6(4), ENEURO.0122-19.2019. https://doi.org/10.1523/ENEURO.0122-19.2019CrossRefGoogle ScholarPubMed
de Cothi, W., Nyberg, N., Griesbauer, E. M., Ghanamé, C., Zisch, F., Lefort, J. M., … Spiers, H. J. (2022). Predictive maps in rats and humans for spatial navigation. Current Biology: CB, 32(17), 3676–3689.e5. https://doi.org/10.1016/j.cub.2022.06.090CrossRefGoogle ScholarPubMed
Druckmann, S., & Rust, N. C. (2023). Unraveling the entangled brain: How do we go about it? Journal of Cognitive Neuroscience, 35, 368–371. https://doi.org/10.1162/jocn_a_01950CrossRefGoogle Scholar
Gan, C., Schwartz, J., Alter, S., Mrowca, D., Schrimpf, M., Traer, J., … Yamins, D. L. K. (2021). ThreeDWorld: A platform for interactive multi-modal physical simulation. bioRxiv. https://doi.org/10.48550/arXiv.2007.04954Google Scholar
Hodges, J. R., & Patterson, K. (2007). Semantic dementia: A unique clinicopathological syndrome. The Lancet. Neurology, 6(11), 1004–1014. https://doi.org/10.1016/S1474-4422(07)70266-1CrossRefGoogle ScholarPubMed
Jozwik, K. M., Kietzmann, T. C., Cichy, R. M., Kriegeskorte, N., & Mur, M. (2023). Deep neural networks and visuo-semantic models explain complementary components of human ventral-stream representational dynamics. The Journal of Neuroscience, 43(10), 1731–1741. https://doi.org/10.1523/JNEUROSCI.1424-22.2022CrossRefGoogle ScholarPubMed
Krakauer, J. W., Ghazanfar, A. A., Gomez-Marin, A., MacIver, M. A., & Poeppel, D. (2017). Neuroscience needs behavior: Correcting a reductionist bias. Neuron, 93(3), 480–490. https://doi.org/10.1016/j.neuron.2016.12.041CrossRefGoogle ScholarPubMed
Lambon Ralph, M. A., Jefferies, E., Patterson, K., & Rogers, T. T. (2017). The neural and computational bases of semantic cognition. Nature Reviews Neuroscience, 18(1), 42–55. https://doi.org/10.1038/nrn.2016.150CrossRefGoogle Scholar
Li, A. Y., Ladyka-Wojcik, N., Qazilbash, H., Golestani, A., Walther, D. B., Martin, C. B., & Barense, M. D. (2022). Multimodal object representations rely on integrative coding. bioRxiv. https://doi.org/10.1101/2022.08.31.504599Google Scholar
Li, A. Y., Yuan, J. Y., Pun, C., & Barense, M. D. (2023). The effect of memory load on object reconstruction: Insights from an online mouse-tracking task. Attention, Perception & Psychophysics, 85(5), 1612–1630. https://doi.org/10.3758/s13414-022-02650-9CrossRefGoogle ScholarPubMed
Peters, B., & Kriegeskorte, N. (2021). Capturing the objects of vision with neural networks. Nature Human Behaviour, 5(9), 1127–1144. https://doi.org/10.1038/s41562-021-01194-6CrossRefGoogle ScholarPubMed
Peters, B., Retchin, M., & Kriegeskorte, N. (2022). Flying objects: Challenging humans and machines in dynamic object vision. Cognitive Computational Neuroscience. https://doi.org/10.32470/ccn.2022.1301-0CrossRefGoogle Scholar
Snow, J. C., & Culham, J. C. (2021). The treachery of images: How realism influences brain and behavior. Trends in Cognitive Sciences, 25(6), 506–519. https://doi.org/10.1016/j.tics.2021.02.008CrossRefGoogle ScholarPubMed
Stanford, T. R., Shankar, S., Massoglia, D. P., Costello, M. G., & Salinas, E. (2010). Perceptual decision making in less than 30 milliseconds. Nature Neuroscience, 13(3), 379–385. https://doi.org/10.1038/nn.2485CrossRefGoogle ScholarPubMed
Starrett, M. J., McAvan, A. S., Huffman, D. J., Stokes, J. D., Kyle, C. T., … Ekstrom, A. D. (2021). Landmarks: A solution for spatial navigation and memory experiments in virtual reality. Behavior Research Methods, 53, 1046–1059. https://doi.org/10.3758/s13428-020-01481-6CrossRefGoogle ScholarPubMed
Straub, D., & Rothkopf, C. A. (2022). Putting perception into action with inverse optimal control for continuous psychophysics. eLife, 11, e76635. https://doi.org/10.7554/eLife.76635CrossRefGoogle ScholarPubMed
Target article
Deep problems with neural network models of human vision
Related commentaries (29)
Explananda and explanantia in deep neural network models of neurological network functions
A deep new look at color
Beyond the limitations of any imaginable mechanism: Large language models and psycholinguistics
Comprehensive assessment methods are key to progress in deep learning
Deep neural networks are not a single hypothesis but a language for expressing computational hypotheses
Even deeper problems with neural network models of language
Fixing the problems of deep neural networks will require better training data and learning algorithms
For deep networks, the whole equals the sum of the parts
For human-like models, train on human-like tasks
Going after the bigger picture: Using high-capacity models to understand mind and brain
Implications of capacity-limited, generative models for human vision
Let's move forward: Image-computable models and a common model evaluation scheme are prerequisites for a scientific understanding of human vision
Modelling human vision needs to account for subjective experience
Models of vision need some action
My pet pig won't fly and I want a refund
Neither hype nor gloom do DNNs justice
Neural networks need real-world behavior
Neural networks, AI, and the goals of modeling
Perceptual learning in humans: An active, top-down-guided process
Psychophysics may be the game-changer for deep neural networks (DNNs) to imitate the human vision
Statistical prediction alone cannot identify good models of behavior
The model-resistant richness of human visual experience
The scientific value of explanation and prediction
There is a fundamental, unbridgeable gap between DNNs and the visual cortex
Thinking beyond the ventral stream: Comment on Bowers et al.
Using DNNs to understand the primate vision: A shortcut or a distraction?
Where do the hypotheses come from? Data-driven learning in science and the brain
Why psychologists should embrace rather than abandon DNNs
You can't play 20 questions with nature and win redux
Author response
Clarifying status of DNNs as models of human vision