In this paper we present a methodology for constructing accurateand efficient hybrid central-upwind (HCU) type schemes forthe numerical resolution of a two-fluid model commonly used by thenuclear and petroleum industry. Particularly, we propose a methodwhich does not make use of any information about theeigenstructure of the Jacobian matrix of the model. The two-fluid model possesses a highly nonlinear pressure law. From the mass conservation equations we develop an evolutionequation which describes how pressure evolves in time. By applyinga quasi-staggered Lax-Friedrichs type discretization for thispressure equation together with a Modified Lax-Friedrich typediscretization of the convective terms, we obtain a central typescheme which allows to cope with the nonlinearity (nonlinearpressure waves) of the two-fluid model in a robust manner.Then, in order to obtain an accurate resolution of mass fronts, weemploy a modification of the convective mass fluxes by hybridizingthe central type mass flux components with upwind type components.This hybridization is based on a splitting of the mass fluxes intocomponents corresponding to the pressure and volume fractionvariables, recovering an accurate resolution of a contactdiscontinuity. In the numerical simulations, the resulting HCU scheme givesresults comparable to an approximate Riemann solver while beingsuperior in efficiency. Furthermore, the HCU scheme yields betterrobustness than other popular Riemann-free upwind schemes.