Hostname: page-component-6bf8c574d5-b4m5d Total loading time: 0 Render date: 2025-02-17T14:45:54.810Z Has data issue: false hasContentIssue false

Homomorphisms between standard modules over finite-type KLR algebras

Published online by Cambridge University Press:  01 March 2017

Alexander S. Kleshchev
Affiliation:
Department of Mathematics, University of Oregon, Eugene, OR 97403, USA email [email protected]
David J. Steinberg
Affiliation:
Department of Mathematics, University of Oregon, Eugene, OR 97403, USA email [email protected]

Abstract

Khovanov–Lauda–Rouquier (KLR) algebras of finite Lie type come with families of standard modules, which under the Khovanov–Lauda–Rouquier categorification correspond to PBW bases of the positive part of the corresponding quantized enveloping algebra. We show that there are no non-zero homomorphisms between distinct standard modules and that all non-zero endomorphisms of a standard module are injective. We present applications to the extensions between standard modules and modular representation theory of KLR algebras.

Type
Research Article
Copyright
© The Authors 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bennett, M., Chari, V., Greenstein, J. and Manning, N., On homomorphisms between global Weyl modules , Represent. Theory 15 (2011), 733752.CrossRefGoogle Scholar
Brundan, J. and Kleshchev, A., Blocks of cyclotomic Hecke algebras and Khovanov–Lauda algebras , Invent. Math. 178 (2009), 451484.Google Scholar
Brundan, J. and Kleshchev, A., Graded decomposition numbers for cyclotomic Hecke algebras , Adv. Math. 222 (2009), 18831942.Google Scholar
Brundan, J. and Kleshchev, A., Homological properties of finite type Khovanov–Lauda–Rouquier algebras, Preprint (2012), arXiv:1210.6900v1 (this is a first version of [ BKM14 ]).Google Scholar
Brundan, J., Kleshchev, A. and McNamara, P., Homological properties of finite type Khovanov–Lauda–Rouquier algebras , Duke Math. J. 163 (2014), 13531404.Google Scholar
Brundan, J., Kleshchev, A. and Wang, W., Graded Specht modules , J. Reine Angew. Math. 655 (2011), 6187.Google Scholar
Curtis, C. W. and Reiner, I., Methods of representation theory, Vol. I (John Wiley & Sons, New York, 1981).Google Scholar
James, G., The decomposition matrices of GL n (q) for n⩽10 , Proc. Lond. Math. Soc. (3) 60 (1990), 225265.Google Scholar
Kashiwara, M. and Park, E., Affinizations and R-matrices for quiver Hecke algebras, Preprint (2015), arXiv:1505.03241.Google Scholar
Kato, S., Poincaré–Birkhoff–Witt bases and Khovanov–Lauda–Rouquier algebras , Duke Math. J. 163 (2014), 619663.CrossRefGoogle Scholar
Khovanov, M. and Lauda, A., A diagrammatic approach to categorification of quantum groups I , Represent. Theory 13 (2009), 309347.Google Scholar
Khovanov, M. and Lauda, A., A diagrammatic approach to categorification of quantum groups II , Trans. Amer. Math. Soc. 363 (2011), 26852700.CrossRefGoogle Scholar
Kleshchev, A., Representation theory and cohomology of Khovanov–Lauda–Rouquier algebras , in Modular representation theory of finite and p-adic groups, Institute of Mathematical Statistics Lecture Note Series, vol. 30 (World Scientific, Singapore, 2015), 109164.CrossRefGoogle Scholar
Kleshchev, A., Affine highest weight categories and affine quasihereditary algebras , Proc. Lond. Math. Soc. (3) 110 (2015), 841882.Google Scholar
Kleshchev, A. and Loubert, J., Affine cellularity of Khovanov–Lauda–Rouquier algebras of finite types , Int. Math. Res. Not. IMRN 2015 (2015), 56595709.Google Scholar
Kleshchev, A., Loubert, J. W. and Miemietz, V., Affine cellularity of Khovanov–Lauda–Rouquier algebras in type A , J. Lond. Math. Soc. (2) 88 (2013), 338358.CrossRefGoogle Scholar
Kleshchev, A. and Ram, A., Representations of Khovanov–Lauda–Rouquier algebras and combinatorics of Lyndon words , Math. Ann. 349 (2011), 943975.CrossRefGoogle Scholar
Koenig, S. and Xi, C., Affine cellular algebras , Adv. Math. 229 (2012), 139182.CrossRefGoogle Scholar
McNamara, P., Finite dimensional representations of Khovanov–Lauda–Rouquier algebras I: finite type , J. Reine Angew. Math. 707 (2015), 103124.Google Scholar
Papi, P., A characterization of a special ordering in a root system , Proc. Amer. Math. Soc. 120 (1994), 661665.CrossRefGoogle Scholar
Rotman, J., An introduction to homological algebra (Academic Press, New York, 1979).Google Scholar
Rouquier, R., 2-Kac-Moody algebras, Preprint (2008), arXiv:0812.5023.Google Scholar
Rouquier, R., Quiver Hecke algebras and 2-Lie algebras , Algebra Colloq. 19 (2012), 359410.CrossRefGoogle Scholar
Williamson, G., On an analogue of the James conjecture , Represent. Theory 18 (2014), 1527.CrossRefGoogle Scholar