No CrossRef data available.
Article contents
Convergence of blanket times for sequences of random walks on critical random graphs
Published online by Cambridge University Press: 09 January 2023
Abstract
Under the assumption that sequences of graphs equipped with resistances, associated measures, walks and local times converge in a suitable Gromov-Hausdorff topology, we establish asymptotic bounds on the distribution of the
$\varepsilon$
-blanket times of the random walks in the sequence. The precise nature of these bounds ensures convergence of the
$\varepsilon$
-blanket times of the random walks if the
$\varepsilon$
-blanket time of the limiting diffusion is continuous at
$\varepsilon$
with probability 1. This result enables us to prove annealed convergence in various examples of critical random graphs, including critical Galton-Watson trees and the Erdős-Rényi random graph in the critical window. We highlight that proving continuity of the
$\varepsilon$
-blanket time of the limiting diffusion relies on the scale invariance of a finite measure that gives rise to realizations of the limiting compact random metric space, and therefore we expect our results to hold for other examples of random graphs with a similar scale invariance property.
Keywords
- Type
- Paper
- Information
- Copyright
- © The Author(s), 2023. Published by Cambridge University Press
References
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230406132554462-0824:S0963548322000359:S0963548322000359_inline1764.png?pub-status=live)