Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-12T10:34:05.012Z Has data issue: false hasContentIssue false

Tooth whorl structure, growth and function in a helicoprionid chondrichthyan Karpinskiprion (nom. nov.) (Eugeneodontiformes) with a revision of the family composition

Published online by Cambridge University Press:  01 February 2023

Oleg A. LEBEDEV*
Affiliation:
A.A. Borissiak Palaeontological Institute of the Russian Academy of Sciences, Moscow 117647, Russia.
Wayne M. ITANO
Affiliation:
Natural History Museum, University of Colorado, Boulder, Colorado 80309, USA.
Zerina JOHANSON
Affiliation:
Natural History Museum, London, SW7 5BD, UK.
Alexander S. ALEKSEEV
Affiliation:
A.A. Borissiak Palaeontological Institute of the Russian Academy of Sciences, Moscow 117647, Russia. Department of Paleontology, Geology Faculty, Lomonosov Moscow State University, Moscow 119992, Russia.
Moya M. SMITH
Affiliation:
Centre for Craniofacial Regenerative Biology (CCRB), Faculty of Dentistry, Oral and Craniofacial Sciences, King's College, London, SE1 1UL, UK.
Aleksey V. IVANOV
Affiliation:
Earth Science Museum, Lomonosov Moscow State University, Moscow 119991, Russia. Institute of Geography, Russian Academy of Sciences, Moscow 119017, Russia. Tambov State Technical University, Tambov 392000, Russia.
Igor V. NOVIKOV
Affiliation:
A.A. Borissiak Palaeontological Institute of the Russian Academy of Sciences, Moscow 117647, Russia.
*
*Corresponding author. Email: [email protected]

Abstract

Restudy of Campyloprion annectans Eastman, 1902 from North America demonstrated that neither specimen included is diagnostic at the species level; thus, the species name is a nomen dubium. Since this species was designated as the type species of the genus, this requires suppression of the generic name also. Another species earlier assigned to Campyloprion, Campyloprion ivanovi Karpinsky, 1924 is used as a type for a newly established genus Karpinskiprion Lebedev et Itano gen. nov. The composition of the family Helicoprionidae Karpinsky, 1911 is reviewed, and a new family Helicampodontidae Itano et Lebedev fam. nov. is erected. A new specimen of Karpinskiprion ivanovi (Karpinsky, 1924) recently discovered in the Volgograd Region of Russia is the most complete Karpinskiprion specimen ever found. It unambiguously demonstrates the coiled nature of these tooth whorls and presents information on their developmental stages. During organogeny, cutting blades of the crown became reshaped, and basal spurs progressively elongated, forming a grater. Whorl growth occurred by addition of new crowns to the earlier mineralised base followed by later spur growth. In contrast to consistently uniform cutting blades, spurs are often malformed and bear traces of growth interruption. Both sides of the outer coil of the tooth whorl bear lifetime wear facets. The youngest (lingual) crowns are as yet unaffected by wear. The best-preserved facets show parallel radially directed scratch marks. The upper jaw dentition of Karpinskiprion is unknown, but we suggest that the faceted areas resulted from interaction with the antagonistic dental structures here. Three possible hypotheses for this interaction are suggested: (a) two opposing whorls acted as scissor blades, moving alternately from one side to another; (b) the lower tooth whorl fitted between paired parasymphyseal tooth whorls of the opposing jaw; or (c) the lower tooth whorl fitted into a dental pavement in the upper jaw.

Type
Spontaneous Article
Copyright
Copyright © The Author(s), 2023. Published by Cambridge University Press on behalf of The Royal Society of Edinburgh

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Dedicated to Tim Smithson, in charge of all British Carboniferous vertebrates, wishing him to find a new edestiform one day!

References

12. References

Aldridge, A. E. 2020. Refined methods for estimating spirals and spiral deviations. Palaeontologia Electronica 23, a41.Google Scholar
Alekseev, A. S., Goreva, N. V., Isakova, T. N., Kossovaya, O. L., Lazarev, S. S. & Davydov, A. E. 2009. Gzhel section. Stratotype of Gzhelian stage. In Alekseev, A. S. & Goreva, N. V. (eds) Type and reference carboniferous sections in the south part of the Moscow basin. Field trip guidebook, August 11–12, 2009 of the international field meeting of the I.U.G.S. Subcommission on carboniferous stratigraphy “The historical type sections, proposed and potential GSSP of the carboniferous in Russia”, 115–37. Moscow: A.A. Borissiak Palaeontological Institute of the Russian Academy of Sciences.Google Scholar
Alekseev, A. S., Nikolaeva, S. V., Goreva, N. V., Donova, N. B., Kossovaya, O. L., Kulagina, E. I., Kucheva, N. A., Kurilenko, A. V., Kutygin, R. V., Popeko, L. I. & Stepanova, T. I. 2022. Russian Regional carboniferous stratigraphy. In Lucas, S. G., Schneider, J. W., Wang, X. & Nikolaeva, S. (eds) The carboniferous timescale, 49117. Geological Society, London: Special Publications, 512.Google Scholar
Barrick, J. E., Alekseev, A. S. & Nemyrovska, T. I. 2000. Provincialism in Idiognathodus and Streptognathodus during the Kasimovian (Late Carboniferous). Geological Society of America. Abstracts with programs. 2000 32, A23.Google Scholar
Bendix-Almgreen, S. E. 1966. New investigations of Helicoprion from the Phosphoria Formation of south-east Idaho, U.S.A. Biologiske Skrifter udgivet af Det Kongelige Danske Videnskabernes Selskab 14, 154.Google Scholar
Berkovitz, B. K. & Shellis, R. P. 2016. The teeth of non-mammalian vertebrates. London: Academic Press, 354 pp.Google Scholar
Branson, C. C. 1935. A labyrinthodont from the Lower Gondwana of Kashmir and a new edestid from the Permian of the Salt Range. Memoirs of the Connecticut Academy of Arts and Sciences 9, 1926.Google Scholar
Chernykh, V. V. 2012. Conodonts of the Gzhelian Stage in Urals. Yekaterinburg: Uralian Branch of Russian Academy of Sciences, 156 pp. [In Russian].Google Scholar
Dean, B. 1898. (for 1897). On a new species of Edestus, E. lecontei from Nevada. Transactions of the New York Academy of Sciences 16, 61–9.Google Scholar
Duffin, C. J. 2016. Cochliodonts and chimaeroids: Arthur Smith Woodward and the Holocephalians. Geological Society, London, Special Publications 430, 137–54.CrossRefGoogle Scholar
Eastman, C. R. 1902. On Campyloprion, a new form of Edestus-like dentition. Geological Magazine 9, 148–52.CrossRefGoogle Scholar
Ermakova, Y. V., Reimers, A. N. & Alekseev, A. S. 2012. Zonal subdivision of Kasimovian and Gzhelian boundary (Upper Carboniferous) of Yabloneviy Ovrag Quarry (Samara Bend) on conodonts. In Zhamoida, A. I. (ed.) Palaeozoic of Russia: regional stratigraphy, palaeontology, geo- and bioevents. Materials of the III All-Russian conference. September 24–28, 2012, St. Petersburg, 89107. St. Petersburg: VSEGEI. [In Russian].Google Scholar
Frazzetta, T. H. 1988. The mechanics of cutting and the form of shark teeth (Chondrichthyes, Elasmobranchii). Zoomorphology 108, 93107.CrossRefGoogle Scholar
Ginter, M., Hampe, O. & Duffin, C. J. 2010. Chondrichthyes: Paleozoic Elasmobranchii: Teeth. In Schultze, H.-P. (ed.) Handbook of paleoichthyology 3D. Munich: Verlag Dr. Friedrich Pfeil. 168 pp.Google Scholar
Hanger, R. A. & Strong, E. E. 1998. Helicoprion nevadensis (Wheeler, 1939) from the Pennsylvanian–Permian Antler Peak Limestone, Lander County, Nevada (Pisces: Selachii: Helicoprionidae). Proceedings of the Biological Society of Washington 111, 531–4.Google Scholar
Hay, O. P. 1909. On the nature of Edestus and related genera, with descriptions of one new genus and three new species. Proceedings of the United States National Museum 37, 4361.CrossRefGoogle Scholar
Heckel, P. H., Alekseev, A. S., Barrick, J. E., Boardman, D. R., Goreva, N. V., Isakova, T. N., Nemyrovska, T. I., Ueno, K., Villa, E. & Work, D. M. 2008. Choice of conodont Idiognathodus simulator (sensu stricto) as the event marker for the base of the global Gzhelian Stage (Upper Pennsylvanian Series, Carboniferous System). Episodes 31, 319–25.CrossRefGoogle Scholar
Huxley, T. H. 1880. On the application of the laws of evolution to the arrangement of the Vertebrata, and more particularly of the Mammalia. Proceedings of the Scientific Meetings of the Zoological Society of London 1880, 649–62.Google Scholar
International Code of Zoological Nomenclature. 1999. Online version: https://www.iczn.org/the-code/the-code-online/.Google Scholar
Itano, W. M. 2015. An abraded tooth of Edestus (Chondrichthyes, Eugeneodontiformes): evidence for a unique mode of predation. Transactions of the Kansas Academy of Science 118, 19.CrossRefGoogle Scholar
Itano, W. M. 2018. A tooth whorl of Edestus heinrichi (Chondrichthyes, Eugeneodontiformes) displaying progressive macrowear. Transactions of the Kansas Academy of Science 121, 125–33.CrossRefGoogle Scholar
Itano, W. M. & Lucas, S. G. 2018. A revision of Campyloprion Eastman, 1902 (Chondrichthyes, Helicoprionidae), including new occurrences from the Upper Pennsylvanian of New Mexico and Texas, USA. Acta Geologica Polonica 68, 403–19.Google Scholar
Ivanov, A. V., Lebedev, O. A., Novikov, I. V., Romanova, E. G. & Yashkov, I. A. 2020. A new find of a tooth whorl of the chondrichthyan fish Campyloprion in the Upper Carboniferous of the Volgograd Region. In Paleostrat-2020. Annual Meeting of the Palaeontology section of the Moscow Naturalists’ Society and the Moscow Branch of the Paleontological Society at the Russian Academy of Sciences. Abstracts volume, 21–22. Moscow: A. A. Borissiak Palaeontological Institute of the RAS. [In Russian].Google Scholar
Ivanova, E. A. & Obruchev, D. V. 1958. Fishes. In Ivanova, E. A. (ed.) Faunistic development of the Middle and Upper Carboniferous Sea in the western part of the Moscow Syneclise in connection with its history. Trudy Paleontologicheskogo Instituta AN SSSR 69, 144–6. [In Russian].Google Scholar
Jaekel, O. 1899. Über die Organisation der Petalodonten [About the organisation of the petalodonts]. Zeitschrift der Deutschen Geologischen Gesellschaft 51, 258–98. [In German.]Google Scholar
Karpinsky, A. P. 1899. On the edestid remains and its new genus Helicoprion. Zapiski Imperatoskoy Akademii Nauk: fiziko-matematicheskoe otdelenie 8, 167, [In Russian].Google Scholar
Karpinsky, A. P. 1911. Notes on Helicoprion and other edestids. Izvestiya Imperatorskoy Akademii Nauk 5, 1105–22, [In Russian].Google Scholar
Karpinsky, A. P. 1915. On the nature of the spiral organ of Helicoprion. Zapiski Ural'skogo Obshchestva Lyubiteley Estestvoznaniya 35, 117–45, [In Russian].Google Scholar
Karpinsky, A. P. 1924a (for 1922). Helicoprion ivanovi, n. sp. Bulletin de l'Académie des Sciences de Russie 16, 369–78, [In Russian].Google Scholar
Karpinsky, A. P. 1924b (for 1922). Helicoprion (Parahelicoprion n. g.) clerci. Zapiski Ural'skogo Obshchestva Lyubiteley Estestvoznaniya 39, 110, [In Russian].Google Scholar
Khabakov, A. V. 1939. Class Pisces. Fishes. In Gorsky, I. I. (ed.) Atlas of the guide forms of the fossil faunas of USSR. V. 5. Middle and Upper Carboniferous, 148–55. Leningrad-Moscow: GONTI USSR. [In Russian].Google Scholar
Kozitskaya, R. I., Kosenko, Z. A., Lipnyagov, O. M. & Nemirovskaya, T. I. 1978. Carboniferous conodonts of Donets Basin. Kiev: Publishing House “Naukova dumka”. 136 pp. [In Russian].Google Scholar
Lebedev, O. A. 2009. A new specimen of Helicoprion Karpinsky, 1899 from Kazakhstanian Cisurals and a new reconstruction of its tooth whorl position and function. Acta Zoologica (Stockholm) 90, 171–82.CrossRefGoogle Scholar
Leidy, J. 1856 (for 1855). Indications of five species, with two new genera, of extinct fishes. Proceedings of the Academy of Natural Sciences of Philadelphia 7, 414.Google Scholar
Liu, H.-T. & Chang, M.-M. 1963. Discovery of helicoprinid fossils in China. Vertebrata PalAsiatica 7, 123–9, [In Chinese with Russian summary].Google Scholar
Liu, Z. 1994. New material of helicoprionid shark from Lianyuan of Hunan. Vertebrata PalAsiatica 32, 127–33, [In Chinese with English summary].Google Scholar
Lund, R. & Grogan, E. D. 1997. Relationships of the Chimaeriformes and the basal radiation of the Chondrichthyes. Reviews in Fish Biology and Fisheries 7, 65123.CrossRefGoogle Scholar
Moyer, J. K. & Bemis, W. E. 2017. Shark teeth as edged weapons: serrated teeth of three species of selachians. Zoology 120, 101–9.CrossRefGoogle ScholarPubMed
Naugolnykh, S. V. 2017. Palaeontology of Moscow and Moscow region. Moscow: Nauka, 160 pp. [In Russian].Google Scholar
Nielsen, E. 1952. On new or little known Edestidae from the Permian and Triassic of East Greenland. Meddelelser om Grønland 144, 155.Google Scholar
Obruchev, D. V. 1953. A study of the edestids and the work of A. P. Karpinskii. Trudy Paleontologicheskogo Instituta Akademii Nauk SSSR 45, 185, [In Russian].Google Scholar
Obruchev, D. V. 1964. Podklass Holocephali. Tsel'nogoloviye [Subclass Holocephali. Holocephalans]. In Obruchev, D. V. (ed.) Osnovy paleontologii. Beschelyustniye, Ryby [Fundamentals of Palaeontology. Agnathans, Fishes]. Moskva: Nauka, 238–66. [In Russian].Google Scholar
Obruchev, D. V. 1965. Composition and evolution of organic groups. Fishes. In Ruzhentsev, V. E. & Sarycheva, T. G. (eds). Razvitie i smena morskikh organizmov na rubezhe paleozoya i mezozoya [The development and change of marine organisms at the Palaeozoic–Mesozoic boundary]. Trudy Paleontologicheskogo Instituta Akademii Nauk SSSR [Transactions of the Palaeontological Institute] 108, 266–7. [In Russian].Google Scholar
Petukhov, S. V., Petrov, G. S. & Pakhomov, I. O. 2011. First record of Eugeneodontiformes (Chondrichthyes) in the Middle Carboniferous of the Lower Volga Region. In Lebedev, O. & Ivanov, A. (eds) Abstract volume of the II international Obruchev Symposium “Paleozoic early vertebrates”, 39. St. Petersburg: St. Petersburg University. [In Russian].Google Scholar
Qi, Y., Barrick, J. E., Hogancamp, N. J., Chen, J., Hu, K., Wang, Q. & Wang, X. 2020. Conodont faunas across the Kasimovian–Gzhelian boundary (Late Pennsylvanian) in South China and implications for the selection of the stratotype for the base of the global Gzhelian stage. Papers in Palaeontology 6, 439–84.CrossRefGoogle Scholar
Ramsay, J. B., Wilga, C. D., Tapanila, L., Pruitt, J., Pradel, A., Schlader, R. & Didier, D. A. 2015. Eating with a saw for a jaw: functional morphology of the jaws and tooth-whorl in Helicoprion davisii. Journal of Morphology 276, 4764.CrossRefGoogle ScholarPubMed
Saltykov, V. F. 2009. Middle and Upper Carboniferous stratigraphy in Lower Volga Region. Saratov: Nauka Publishing Centre, 127 pp. [In Russian].Google Scholar
St. John, O. & Worthen, A. H. 1875. Descriptions of fossil fishes. Geological Survey of Illinois 6, 245488.Google Scholar
Sungatullina, G. M. 2008. Biostratigraphy of Upper Carboniferous in the East of Russian Plate by conodonts. Uchenye Zapiski Kazanskogo Gosudarstvennogo Universiteta 150, 183–97, [In Russian].Google Scholar
Tapanila, L. & Pruitt, J. 2013. Unraveling species concepts for the Helicoprion tooth whorl. Journal of Paleontology 87, 965–83.CrossRefGoogle Scholar
Tapanila, L., Pruitt, J., Wilga, C. D. & Pradel, A. 2020. Saws, scissors, and sharks: late Paleozoic experimentation with symphyseal dentition. Anatomical Record 303, 363–76.CrossRefGoogle ScholarPubMed
Tapanila, L., Pruitt, J., Pradel, A., Wilga, C. D., Ramsay, J. B., Schlader, R. & Didier, D. A. 2013. Jaws for a spiral-tooth whorl: CT images reveal novel adaptation and phylogeny in fossil Helicoprion. Biology Letters 9, 20130057.CrossRefGoogle ScholarPubMed
Tchuvashov, B. I. 2001. Permian sharks of the family Helicoprionidae: stratigraphic and geographic distribution, ecology, a new member. Materialy po stratigrafii i palaeontologii Urala 6, 1227, [In Russian].Google Scholar
Teichert, C. 1940. Helicoprion in the Permian of Western Australia. Journal of Paleontology 14, 140–9.Google Scholar
Villa, E., Alekseev, A. S., Barrick, J. E., Boardman, D. R., Djenchuraeva, A. V., Fohrer, B., Forke, H., Goreva, N. V., Heckel, P. H., Isakova, T. N., Kossovaya, O., Lambert, L. L., Martinez-Chacon, M.-L., Mendez, C. A., Nemyrovska, T. I., Remizova, S., Samankassou, E., Sanchez de Posada, L. C., Ueno, K., Wahlman, G. & Work, D. M. 2009. Selection of the conodont Idiognathodus simulator (Ellison) as the event marker for the level of the global Gzhelian Stage (Upper Pennsylvanian, Carboniferous). Palaeoworld 18, 114–9.CrossRefGoogle Scholar
Zangerl, R. 1981. Chondrichthyes I: Paleozoic elasmobranchii. In Schultze, H.-P. (ed.) Handbook of paleoichthyology 3A. Stuttgart: Gustav Fischer Verlag. 115 pp.Google Scholar
Zangerl, R. & Jeremiah, C. 2004. Notes on the tooth “saw blades” of Edestus, a late Paleozoic chondrichthyan. Mosasaur 7, 918.Google Scholar
Supplementary material: File

Lebedev et al. supplementary material

Lebedev et al. supplementary material

Download Lebedev et al. supplementary material(File)
File 73.9 MB