Article contents
A Berestycki–Lions type result for a class of degenerate elliptic problems involving the Grushin operator
Published online by Cambridge University Press: 05 July 2022
Abstract
In this work we study the existence of nontrivial solution for the following class of semilinear degenerate elliptic equations
is known as the Grushin operator, $z:=(x,y)\in \mathbb {R}^{m}\times \mathbb {R}^{k}$
and $m+k=N\geqslant 3$
, $f$
and $a$
are continuous function satisfying some technical conditions. In order to overcome some difficulties involving this type of operator, we have proved some compactness results that are crucial in the proof of our main results. For the case $a=1$
, we have showed a Berestycki–Lions type result.
MSC classification
- Type
- Research Article
- Information
- Proceedings of the Royal Society of Edinburgh Section A: Mathematics , Volume 153 , Issue 4 , August 2023 , pp. 1244 - 1271
- Copyright
- Copyright © The Author(s), 2022. Published by Cambridge University Press on behalf of The Royal Society of Edinburgh
References
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230706021910906-0934:S0308210522000439:S0308210522000439_inline571.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230706021910906-0934:S0308210522000439:S0308210522000439_inline572.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230706021910906-0934:S0308210522000439:S0308210522000439_inline573.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230706021910906-0934:S0308210522000439:S0308210522000439_inline574.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230706021910906-0934:S0308210522000439:S0308210522000439_inline575.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230706021910906-0934:S0308210522000439:S0308210522000439_inline576.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230706021910906-0934:S0308210522000439:S0308210522000439_inline577.png?pub-status=live)
- 2
- Cited by