Article contents
On
$C^0$-genericity of distributional chaos
Published online by Cambridge University Press: 15 November 2021
Abstract
Let M be a compact smooth manifold without boundary. Based on results by Good and Meddaugh [Invent. Math. 220 (2020), 715–736], we prove that a strong distributional chaos is
$C^0$
-generic in the space of continuous self-maps (respectively, homeomorphisms) of M. The results contain answers to questions by Li, Li and Tu [Chaos 26 (2016), 093103] and Moothathu [Topology Appl. 158 (2011), 2232–2239] in the zero-dimensional case. A related counter-example on the chain components under shadowing is also given.
MSC classification
- Type
- Original Article
- Information
- Copyright
- © The Author(s), 2021. Published by Cambridge University Press
References
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230115072701290-0013:S0143385721001279:S0143385721001279_inline1379.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230115072701290-0013:S0143385721001279:S0143385721001279_inline1380.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230115072701290-0013:S0143385721001279:S0143385721001279_inline1381.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230115072701290-0013:S0143385721001279:S0143385721001279_inline1382.png?pub-status=live)
- 5
- Cited by