No CrossRef data available.
Article contents
MULTIPLIERS ON THE SECOND DUAL OF ABSTRACT SEGAL ALGEBRAS
Part of:
Topological algebras, normed rings and algebras, Banach algebras
Abstract harmonic analysis
Published online by Cambridge University Press: 06 October 2022
Abstract
We characterise the existence of certain (weakly) compact multipliers of the second dual of symmetric abstract Segal algebras in both the group algebra $L^{1}(G)$ and the Fourier algebra
$A(G)$ of a locally compact group G.
- Type
- Research Article
- Information
- Bulletin of the Australian Mathematical Society , Volume 108 , Issue 1 , August 2023 , pp. 133 - 141
- Copyright
- © The Author(s), 2022. Published by Cambridge University Press on behalf of Australian Mathematical Publishing Association Inc.
Footnotes
The research of the first author was in part supported by a grant from IPM (No. 1401170411).
References
Alaghmandan, M., Nasr-Isfahani, R. and Nemati, M., ‘Character amenability and contractibility of abstract Segal algebras’, Bull. Aust. Math. Soc. 82 (2010), 274–281.CrossRefGoogle Scholar
Burnham, J. T., ‘Closed ideals in subalgebras of Banach algebras. I’, Proc. Amer. Math. Soc. 32 (1972), 551–555.CrossRefGoogle Scholar
Eymard, P., ‘L’algèbre de Fourier d’un groupe localement compact’, Bull. Soc. Math. France 92 (1964), 181–236.CrossRefGoogle Scholar
Ghahramani, F. and Lau, A. T.-M., ‘Multipliers and ideals in second conjugate algebras related to locally compact groups’, J. Funct. Anal. 132 (1995), 170–191.CrossRefGoogle Scholar
Ghahramani, F. and Lau, A. T.-M., ‘Multipliers and modulus on Banach algebras related to locally compact groups’, J. Funct. Anal. 150 (1997), 478–497.CrossRefGoogle Scholar
Ghahramani, F. and Lau, A. T.-M., ‘Approximate weak amenability, derivations and Arens regularity of Segal algebras’, Studia Math. 169 (2005), 189–205.CrossRefGoogle Scholar
Kaniuth, E., Lau, A. T.-M. and Pym, J., ‘On
$\varphi$
-amenability of Banach algebras’, Math. Proc. Cambridge Philos. Soc. 144 (2008), 85–96.CrossRefGoogle Scholar
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230929052428826-0083:S0004972722001071:S0004972722001071_inline367.png?pub-status=live)
Kaniuth, E., Lau, A. T.-M. and Pym, J., ‘On character amenability of Banach algebras’, J. Math. Anal. Appl. 344 (2008), 942–955.CrossRefGoogle Scholar
Klawe, M., ‘On the dimension of left invariant means and left thick subsets’, Trans. Amer. Math. Soc. 231 (1977), 507–518.CrossRefGoogle Scholar
Lau, A. T.-M., ‘Uniformly continuous functionals on the Fourier algebra of any locally compact group’, Trans. Amer. Math. Soc. 251 (1979), 39–59.CrossRefGoogle Scholar
Lau, A. T.-M., ‘Analysis on a class of Banach algebras with application to harmonic analysis on locally compact groups and semigroups’, Fund. Math. 118 (1983), 161–175.Google Scholar
Lau, A. T.-M. and Paterson, A. L. T., ‘The exact cardinality of the set of topological left invariant means on an amenable locally compact group’, Proc. Amer. Math. Soc. 98 (1986), 75–80.CrossRefGoogle Scholar
Reiter, H.,
${L}^1$
-algebras and Segal Algebras, Lecture Notes in Mathematics, 231 (Springer, Berlin, 1971).CrossRefGoogle Scholar
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230929052428826-0083:S0004972722001071:S0004972722001071_inline368.png?pub-status=live)
Sakai, S., ‘Weakly compact operators on operator algebras’, Pacific J. Math. 14 (1964), 659–664.CrossRefGoogle Scholar