Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2025-01-01T03:43:50.646Z Has data issue: false hasContentIssue false

Log Calabi–Yau surfaces and Jeffrey–Kirwan residues

Published online by Cambridge University Press:  04 March 2024

RICCARDO ONTANI
Affiliation:
SISSA, via Bonomea 265, 34136 Trieste, Italy. e-mails:[email protected], [email protected]
JACOPO STOPPA
Affiliation:
SISSA, via Bonomea 265, 34136 Trieste, Italy. e-mails:[email protected], [email protected]

Abstract

We prove an equality, predicted in the physical literature, between the Jeffrey–Kirwan residues of certain explicit meromorphic forms attached to a quiver without loops or oriented cycles and its Donaldson–Thomas type invariants.

In the special case of complete bipartite quivers we also show independently, using scattering diagrams and theta functions, that the same Jeffrey–Kirwan residues are determined by the the Gross–Hacking–Keel mirror family to a log Calabi–Yau surface.

Type
Research Article
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of Cambridge Philosophical Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Beaujard, G., Mondal, S. and Pioline, B.. Quiver indices and Abelianization from Jeffrey–Kirwan residues. J. High Energy Phys. 184(10) (2019), 41 pp.Google Scholar
Benini, F. and Cremonesi, S.. Partition functions of $\mathcal{N} = (2,2)$ gauge theories on $S^2$ and vortices. Comm. Math. Phys. 334(3) (2015), 14831527.CrossRefGoogle Scholar
Benini, F., Eager, R., Hori, K. and Tachikawa, Y.. Elliptic genera of 2d $\mathcal{N} = 2$ gauge theories. Comm. Math. Phys. 333(3) (2015), 12411286.CrossRefGoogle Scholar
Bousseau, P.. Quantum mirrors of log Calabi–Yau surfaces and higher genus curve counting. PhD. thesis. Imperial College, London (2018).Google Scholar
Bousseau, P.. Quantum mirrors of log Calabi–Yau surfaces and higher-genus curve counting. Compositio Math. 156(2) (2020), 360411.CrossRefGoogle Scholar
Bousseau, P., Brini, Andrea and van Garrel, Michel. Stable maps to Looijenga pairs. ArXiv:2011.08830 (2021).Google Scholar
Bridgeland, T.. Scattering diagrams, Hall algebras and stability conditions. Algebr. Geom. 4(5) (2017), 523561.CrossRefGoogle Scholar
Bridgeland, T. and Toledano–Laredo, V.. Stability conditions and Stokes factors. Invent. Math. 187(1) (2012), 6198.CrossRefGoogle Scholar
Brion, M. and Vergne, M.. Arrangement of hyperplanes. I. Rational functions and Jeffrey–Kirwan residue. Ann. Sci. École Norm. Sup. (4) 32(5) (1999), 715741.CrossRefGoogle Scholar
Chan, K., Leung, N. C. and Ma, Z.. Scattering diagrams from asymptotic analysis on Maurer–Cartan equations. J. Eur. Math. Soc. 24(3) (2022), 773849.CrossRefGoogle Scholar
Closset, C., Cremonesi, S. and Park, D. S.. The equivariant A-twist and gauged linear sigma models on the two-sphere. J. High Energy Phys. 076(6) (2015), front matter+110 p.Google Scholar
Córdova, C. and Shao, S.–H.. An index formula for supersymmetric quantum mechanics. J. Singul. 15 (2016), 1435.Google Scholar
Filippini, S., Garcia–Fernandez, M. and Stoppa, J.. Stability data, irregular connections and tropical curves. Selecta Math. (N.S.) 23(2) (2017), 13551418.CrossRefGoogle Scholar
Gaiotto, D., Moore, G. and Neitzke, A.. Four dimensional wall-crossing via three-dimensional field theory. Comm. Math. Phys. 299(1) (2010), 163224.CrossRefGoogle Scholar
Gross, M., Hacking, P. and Keel, S.. Mirror symmetry for log Calabi–Yau surfaces I. Publ. Math. Inst. Hautes Études Sci. 122 (2015), 65168.CrossRefGoogle Scholar
Gross, M., Hacking, P. and Keel, S.. Moduli of surfaces with an anti-canonical cycle. Compositio Math. 151(2) (2015), 265291.CrossRefGoogle Scholar
Gross, M. and Pandharipande, R.. Quivers, curves, and the tropical vertex. Port. Math. 67(2) (2010), 211259.CrossRefGoogle Scholar
Gross, M., Pandharipande, R. and Siebert, B.. The tropical vertex. Duke Math. J. 153(2) (2010), 297362.CrossRefGoogle Scholar
Gross, M. and Siebert, B.. From real affine geometry to complex geometry. Ann. of Math. 174 (2011), 13011428.CrossRefGoogle Scholar
Joyce, D. and Song, Y.. A theory of generalized Donaldson–Thomas invariants. Mem. Amer. Math. Soc. 217(1020) (2012), iv+199 pp.Google Scholar
Kontsevich, M. and Soibelman, Y.. Stability structures, motivic Donaldson–Thomas invariants and cluster transformations. preprint arXiv:0811.2435.Google Scholar
Lai, J. and Zhou, Y.. Mirror Symmetry for log Calabi–Yau Surfaces II. preprint arXiv:2201.12703.Google Scholar
Leung, C., Ma, Z. and Young, M. B.. Refined scattering diagrams and theta functions from asymptotic analysis of Maurer–Cartan equations. Internat. Math. Res. Not. (5) (2021), 33893437.CrossRefGoogle Scholar
Manschot, J., Pioline, B. and Sen, A.. Wall crossing from Boltzmann black hole halos. J. High Energy Phys. 059 (7) (2011), 73 pp.Google Scholar
Meinhardt, S. and Reineke, M.. Donaldson–Thomas invariants versus intersection cohomology of quiver moduli. J. Reine Angew. Math. 754 (2019), 143178.CrossRefGoogle Scholar
Reineke, M., Stoppa, J. and Weist, T.. MPS degeneration formula for quiver moduli and refined GW/Kronecker correspondence. Geom. Topol. 16(4) (2012), 20972134.CrossRefGoogle Scholar
Reineke, M. and Weist, T.. Refined GW/Kronecker correspondence. Math. Ann. 355(1) (2013), 1756.CrossRefGoogle Scholar
Ruddat, H. and Siebert, B.. Period integrals from wall structures via tropical cycles, canonical coordinates in mirror symmetry and analyticity of toric degenerations. Publ. Math. Inst. Hautes Études Sci. 132 (2020), 182.CrossRefGoogle Scholar
Szenes, A. and Vergne, M.. Toric reduction and a conjecture of Batyrev and Materov. Invent. Math. 158(3) (2004), 453495.CrossRefGoogle Scholar
Ueda, K. and Yoshida, Y.. Equivariant A-twisted GLSM and Gromov–Witten invariants of CY 3-folds in Grassmannians. J. High Energy Phys. 128 (9) (2017), front matter+19 pp.Google Scholar
Weist, T.. Localization in quiver moduli spaces. Represent. Theory 17 (2013), 382425 p.CrossRefGoogle Scholar