Crossref Citations
This article has been cited by the following publications. This list is generated based on data provided by Crossref.
Dwivedi, Yogesh K.
Hughes, Laurie
Ismagilova, Elvira
Aarts, Gert
Coombs, Crispin
Crick, Tom
Duan, Yanqing
Dwivedi, Rohita
Edwards, John
Eirug, Aled
Galanos, Vassilis
Ilavarasan, P. Vigneswara
Janssen, Marijn
Jones, Paul
Kar, Arpan Kumar
Kizgin, Hatice
Kronemann, Bianca
Lal, Banita
Lucini, Biagio
Medaglia, Rony
Le Meunier-FitzHugh, Kenneth
Le Meunier-FitzHugh, Leslie Caroline
Misra, Santosh
Mogaji, Emmanuel
Sharma, Sujeet Kumar
Singh, Jang Bahadur
Raghavan, Vishnupriya
Raman, Ramakrishnan
Rana, Nripendra P.
Samothrakis, Spyridon
Spencer, Jak
Tamilmani, Kuttimani
Tubadji, Annie
Walton, Paul
and
Williams, Michael D.
2021.
Artificial Intelligence (AI): Multidisciplinary perspectives on emerging challenges, opportunities, and agenda for research, practice and policy.
International Journal of Information Management,
Vol. 57,
Issue. ,
p.
101994.
Chen, Kunhao
Huang, Zhendong
Chen, Cheng
Cheng, Yijia
Shang, Yuanbiao
Zhu, Pengcheng
Jv, Haoye
Li, Lanlan
Li, Weili
and
Wang, Shuyi
2023.
Surface Crack Detection of Steel Structures in Railroad Industry Based on Multi-Model Training Comparison Technique.
Processes,
Vol. 11,
Issue. 4,
p.
1208.
Li, Oliver
2023.
Re-creating the world - On necessary features for the creation of AGI.
New Techno Humanities,
Vol. 3,
Issue. 1,
p.
56.
Gidey, Habtom Kahsay
Hillmann, Peter
Karcher, Andreas
and
Knoll, Alois
2024.
Machine Learning, Optimization, and Data Science.
Vol. 14506,
Issue. ,
p.
388.
Long, Robert
2024.
Nativism and empiricism in artificial intelligence.
Philosophical Studies,
Vol. 181,
Issue. 4,
p.
763.
Target article
Building machines that learn and think like people
Related commentaries (27)
Autonomous development and learning in artificial intelligence and robotics: Scaling up deep learning to human-like learning
Avoiding frostbite: It helps to learn from others
Back to the future: The return of cognitive functionalism
Benefits of embodiment
Building brains that communicate like machines
Building machines that adapt and compute like brains
Building machines that learn and think for themselves
Building on prior knowledge without building it in
Causal generative models are just a start
Children begin with the same start-up software, but their software updates are cultural
Crossmodal lifelong learning in hybrid neural embodied architectures
Deep-learning networks and the functional architecture of executive control
Digging deeper on “deep” learning: A computational ecology approach
Evidence from machines that learn and think like people
Human-like machines: Transparency and comprehensibility
Intelligent machines and human minds
Social-motor experience and perception-action learning bring efficiency to machines
The architecture challenge: Future artificial-intelligence systems will require sophisticated architectures, and knowledge of the brain might guide their construction
The argument for single-purpose robots
The fork in the road
The humanness of artificial non-normative personalities
The importance of motivation and emotion for explaining human cognition
Theories or fragments?
Thinking like animals or thinking like colleagues?
Understand the cogs to understand cognition
What can the brain teach us about building artificial intelligence?
Will human-like machines make human-like mistakes?
Author response
Ingredients of intelligence: From classic debates to an engineering roadmap