In the rabbit retina, the nuclear dye, 4,6, diarnidino-2-phenylindole (DAPI), selectively labels a third type of amacrine cell, in addition to the previously characterized type a and type b cholinergic amacrine cells. In this study, these “DAPI-3” amacrine cells have been characterized with respect to their somatic distribution, dendritic morphology, and neurotransmitter content by combining intracellular injection of biotinylated tracers with wholemount immunocytochemistry. There are about 100,000 DAPI-3 amacrine cells in total, accounting for 2% of all amacrine cells in the rabbit retina, and their cell density ranges from about 130 cells/mm2 in far-peripheral retina to 770 cells/mm2 in the visual streak. The thin varicose dendrites of the DAPI-3 amacrine cells form a convoluted dendritic tree that is symmetrically bistratified in S1/S2 and S4 of the inner plexiform layer. Tracer coupling shows that the DAPI-3 amacrine cells have a fivefold dendritic-field overlap in each sublamina, with the gaps in the arborization of each cell being occupied by dendrites from neighboring cells. The DAPI-3 amacrine cells consistently show the strongest glycine immunoreactivity in the rabbit retina and they also accumulate exogenous [3H]-glycine to a high level. By contrast, the All amacrine cells, which are the best characterized glycinergic cells in the retina, are amongst the most weakly labelled of the glycine-immunopositive amacrine cells. The DAPI-3 amacrine cells costratify narrowly with the cholinergic amacrine cells and the On-Off direction-selective ganglion cells, suggesting that they may play an important role in movement detection.