We present plingo, an extension of the answer set programming (ASP) system clingo that incorporates various probabilistic reasoning modes. Plingo is based on $\textit{Lpmln}^{\pm }$, a simple variant of the probabilistic language Lpmln, which follows a weighted scheme derived from Markov logic. This choice is motivated by the fact that the main probabilistic reasoning modes can be mapped onto enumeration and optimization problems and that $\textit{Lpmln}^{\pm }$ may serve as a middle-ground formalism connecting to other probabilistic approaches. Plingo offers three alternative frontends, for Lpmln, P-log, and ProbLog. These input languages and reasoning modes are implemented by means of clingo’s multi-shot and theory-solving capabilities. In this way, the core of plingo is an implementation of $\textit{Lpmln}^{\pm }$ in terms of modern ASP technology. On top of that, plingo implements a new approximation technique based on a recent method for answer set enumeration in the order of optimality. Additionally, in this work, we introduce a novel translation from $\textit{Lpmln}^{\pm }$ to ProbLog. This leads to a new solving method in plingo where the input program is translated and a ProbLog solver is executed. Our empirical evaluation shows that the different solving approaches of plingo are complementary and that plingo performs similarly to other probabilistic reasoning systems.