Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-27T21:36:37.944Z Has data issue: false hasContentIssue false

How do memory modules differentially contribute to familiarity and recollection?

Published online by Cambridge University Press:  03 January 2020

Olya Hakobyan
Affiliation:
Institute for Neural Computation, Ruhr University Bochum, 44801Bochum, Germany. [email protected]@rub.dewww.rub.de/cns
Sen Cheng
Affiliation:
Institute for Neural Computation, Ruhr University Bochum, 44801Bochum, Germany. [email protected]@rub.dewww.rub.de/cns

Abstract

We fully support dissociating the subjective experience from the memory contents in recognition memory, as Bastin et al. posit in the target article. However, having two generic memory modules with qualitatively different functions is not mandatory and is in fact inconsistent with experimental evidence. We propose that quantitative differences in the properties of the memory modules can account for the apparent dissociation of recollection and familiarity along anatomical lines.

Type
Open Peer Commentary
Copyright
Copyright © Cambridge University Press 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Azizi, A. H., Schieferstein, N. & Cheng, S. (2014) The transformation from grid cells to place cells is robust to noise in the grid pattern. Hippocampus 24(8):912–19. Available at: https://doi.org/10.1002/hipo.22306.CrossRefGoogle ScholarPubMed
Bayley, P. J., Wixted, J. T., Hopkins, R. O. & Squire, L. R. (2008) Yes/no recognition, forced-choice recognition, and the human hippocampus. Journal of Cognitive Neuroscience 20(3):505–12. doi: 10.1162/jocn.2008.20038. Available at: https://doi.org/10.1162/jocn.2008.20038.CrossRefGoogle ScholarPubMed
Beer, Z., Vavra, P., Atucha, E., Rentzing, K., Heinze, H.-J. & Sauvage, M. M. (2018) The memory for time and space differentially engages the proximal and distal parts of the hippocampal subfields CA1 and CA3. PLOS Biology 16(8):e2006100. Available at: https://doi.org/10.1371/journal.pbio.2006100.CrossRefGoogle ScholarPubMed
Brown, M. W. & Aggleton, J. P. (2001) Recognition memory: What are the roles of the perirhinal cortex and hippocampus? Nature Reviews. Neuroscience 2(1):5161. Available at: https://doi.org/10.1038/35049064.CrossRefGoogle ScholarPubMed
Cheng, S. (2013) The CRISP theory of hippocampal function in episodic memory. Frontiers in Neural Circuits 7: article no. 88. Available at: https://doi.org/10.3389/fncir.2013.00088.CrossRefGoogle ScholarPubMed
Cheng, S. & Werning, M. (2016) What is episodic memory if it is a natural kind? Synthese 193(5):1345–85. Available at: https://doi.org/10.1007/s11229-014-0628-6.CrossRefGoogle Scholar
Cheng, S., Werning, M. & Suddendorf, T. (2016) Dissociating memory traces and scenario construction in mental time travel. Neuroscience & Biobehavioral Reviews 60:8289. Available at: https://doi.org/10.1016/j.neubiorev.2015.11.011.CrossRefGoogle ScholarPubMed
Du, A. T., Schuff, N., Amend, D., Laakso, M. P., Hsu, Y. Y., Jagust, W. J., Yaffe, K., Kramer, J. H., Reed, B., Norman, D., Chui, H. C. & Weiner, M. W. (2001) Magnetic resonance imaging of the entorhinal cortex and hippocampus in mild cognitive impairment and Alzheimer's disease. Journal of Neurology, Neurosurgery, and Psychiatry 71(4):441–47.CrossRefGoogle ScholarPubMed
Fang, J., Demic, S. & Cheng, S. (2018a) The reduction of adult neurogenesis in depression impairs the retrieval of new as well as remote episodic memory. PLOS ONE, 13(6):e0198406. Available at: https://doi.org/10.1371/journal.pone.0198406.CrossRefGoogle Scholar
Fang, J., Rüther, N., Bellebaum, C., Wiskott, L. & Cheng, S. (2018b) The Interaction between Semantic Representation and Episodic Memory. Neural Computation 30(2):293332. Available at: https://doi.org/10.1162/neco_a_01044.CrossRefGoogle Scholar
Greve, A., Donaldson, D. I. & van Rossum, M. C. W. (2010) A single-trace dual-process model of episodic memory: A novel computational account of familiarity and recollection. Hippocampus 20(2):235–51. doi: 10.1002/hipo.20606.Google ScholarPubMed
Holdstock, J. S., Mayes, A. R., Roberts, N., Cezayirli, E., Isaac, C. L., O'Reilly, R. C. & Norman, K. A. (2002) Under what conditions is recognition spared relative to recall after selective hippocampal damage in humans? Hippocampus 12(3):341–51. doi: 10.1002/hipo.10011.CrossRefGoogle ScholarPubMed
Ingram, K. M., Mickes, L. & Wixted, J. T. (2012) Recollection can be weak and familiarity can be strong. Journal of Experimental Psychology. Learning, Memory, and Cognition 38(2):325–39. Available at: https://doi.org/10.1037/a0025483.CrossRefGoogle ScholarPubMed
Mishkin, M., Ungerleider, L. G. & Macko, K. A. (1983) Object vision and spatial vision: Two cortical pathways. Trends in Neurosciences 6:414–17. Available at: https://doi.org/10.1016/0166-2236(83)90190-X.CrossRefGoogle Scholar
Neher, T., Azizi, A. H. & Cheng, S. (2017) From grid cells to place cells with realistic field sizes. PLoS One 12(7):e0181618. Available at: https://doi.org/10.1371/journal.pone.0181618.CrossRefGoogle ScholarPubMed
Norman, K. A. & O'Reilly, R. C. (2003) Modeling hippocampal and neocortical contributions to recognition memory: A complementary-learning-systems approach. Psychological Review 110(4):611–46. Available at: https://doi.org/10.1037/0033-295X.110.4.611.CrossRefGoogle ScholarPubMed
Raz, N., Lindenberger, U., Rodrigue, K. M., Kennedy, K. M., Head, D., Williamson, A., Dahle, C., Gerstorf, D. & Acker, J. D. (2005) Regional brain changes in aging healthy adults: General trends, individual differences and modifiers. Cerebral Cortex 15(11):1676–89. Available at: https://doi.org/10.1093/cercor/bhi044.CrossRefGoogle ScholarPubMed
Stark, S. M., Yassa, M. A., Lacy, J. W. & Stark, C. E. L. (2013) A task to assess behavioral pattern separation (BPS) in humans: Data from healthy aging and mild cognitive impairment. Neuropsychologia 51(12):2442–49. Available at: https://doi.org/10.1016/j.neuropsychologia.2012.12.014.CrossRefGoogle ScholarPubMed
Suddendorf, T. & Corballis, M. C. (1997) Mental time travel and the evolution of the human mind. Genetic, Social, and General Psychology Monographs 123(2):133–67.Google ScholarPubMed
Teyler, T. J. & DiScenna, P. (1986) The hippocampal memory indexing theory. Behavioral Neuroscience 100(2):147–54.CrossRefGoogle ScholarPubMed
Teyler, T. J. & Rudy, J. W. (2007) The hippocampal indexing theory and episodic memory: Updating the index. Hippocampus 17(12):1158–69. doi: 10.1002/hipo.20350.CrossRefGoogle ScholarPubMed
Werning, M. & Cheng, S. (2017) Taxonomy and unity of memory. In The Routledge handbook of philosophy of memory, ed. Bernecker, S. & Michaelian, K., pp. 720. Routledge.CrossRefGoogle Scholar
Westerberg, C. E., Paller, K. A., Weintraub, S., Mesulam, M.-M., Holdstock, J. S., Mayes, A. R. & Reber, P. J. (2006) When memory does not fail: Familiarity-based recognition in mild cognitive impairment and Alzheimer's disease. Neuropsychology 20(2):193205. Available at: https://doi.org/10.1037/0894-4105.20.2.193.CrossRefGoogle Scholar