Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-27T15:30:51.385Z Has data issue: false hasContentIssue false

The integrated information theory of consciousness: A case of mistaken identity

Published online by Cambridge University Press:  19 May 2021

Bjorn Merker
Affiliation:
Independent Scholar, Fjälkestadsv. 410-82, 29194 Kristianstad, Sweden [email protected]
Kenneth Williford
Affiliation:
Department of Philosophy & Humanities, University of Texas at Arlington, Arlington, TX 76019, USA. [email protected]; https://mentis.uta.edu/explore/profile/kenneth-williford
David Rudrauf
Affiliation:
Faculty of Psychology and Education Science, Swiss Center for Affective Science, University Center of Computer Science, University of Geneva, Geneva 1202, Switzerland. [email protected]; https://www.unige.ch/fapse/mmef/en/recherche/

Abstract

Giulio Tononi's integrated information theory (IIT) proposes explaining consciousness by directly identifying it with integrated information. We examine the construct validity of IIT's measure of consciousness, phi (Φ), by analyzing its formal properties, its relation to key aspects of consciousness, and its co-variation with relevant empirical circumstances. Our analysis shows that IIT's identification of consciousness with the causal efficacy with which differentiated networks accomplish global information transfer (which is what Φ in fact measures) is mistaken. This misidentification has the consequence of requiring the attribution of consciousness to a range of natural systems and artifacts that include, but are not limited to, large-scale electrical power grids, gene-regulation networks, some electronic circuit boards, and social networks. Instead of treating this consequence of the theory as a disconfirmation, IIT embraces it. By regarding these systems as bearers of consciousness ex hypothesi, IIT is led toward the orbit of panpsychist ideation. This departure from science as we know it can be avoided by recognizing the functional misattribution at the heart of IIT's identity claim. We show, for example, what function is actually performed, at least in the human case, by the cortical combination of differentiation with integration that IIT identifies with consciousness. Finally, we examine what lessons may be drawn from IIT's failure to provide a credible account of consciousness for progress in the very active field of research concerned with exploring the phenomenon from formal and neural points of view.

Type
Target Article
Copyright
Copyright © The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aaronson, S. (2014). Giulio Tononi and Me: A Phi-nal Exchange. Entry posted May 30th, 2014 on Scott Aaronson blog, https://www.scottaaronson.com/blog/?p=1823Google Scholar
Adrian, E. D., Bremer, F., & Jasper, H. H. (Eds.), (1954). Brain mechanisms and consciousness. Charles C. Thomas.Google Scholar
Andersen, B. B., Gundersen, H. J., & Pakkenberg, B. (2003). Aging of the human cerebellum: A stereological study. Journal of Comparative Neurology, 466, 356365. doi: 10.1002/cne.10884CrossRefGoogle ScholarPubMed
Baars, B. J. (1988). A cognitive theory of consciousness. Cambridge University Press.Google Scholar
Balduzzi, D. (2011). Detecting emergent processes in cellular automata with excess information. arXiv preprint arXiv:1105.0158.Google Scholar
Balduzzi, D., & Tononi, G. (2008). Integrated information in discrete dynamical systems: Motivation and theoretical framework. PLoS Computational Biology, 4, e1000091. doi: 10.1371/journal.pcbi.1000091CrossRefGoogle ScholarPubMed
Balduzzi, D., & Tononi, G. (2009). Qualia: The geometry of integrated information. PLoS Computational Biology, 5, e1000462. doi: 10.1371/journal.pcbi.1000462CrossRefGoogle ScholarPubMed
Barabási, A.-L., & Albert, R. (1999). Emergence of scaling in random networks. Science (New York, N.Y.), 286, 509512. doi: 10.1126/science.286.5439.509CrossRefGoogle ScholarPubMed
Barbeito, R., & Ono, H. (1979). Four methods of locating the egocenter: A comparison of their predictive validities and reliabilities. Behavior Research Methods & Instrumentation, 11, 3136.10.3758/BF03205428CrossRefGoogle Scholar
Barrett, A. B., & Seth, A. K. (2011) Practical measures of integrated information for tTime-series data. PLoS Computational Biology, 7, e1001052. doi:10.1371/journal.pcbi.1001052CrossRefGoogle ScholarPubMed
Barrett, A. B., & Mediano, P. A. M. (2019). The Φ measure of integrated information is not well-defined for general physical systems. arXiv:1902.04321v1 [q-bio.NC] 12 Feb 2019.Google Scholar
Barzel, B., & Barabási, A.-L. (2013). Universality in network dynamics. Nature Physics, 9, 673681. doi: 10.1038/NPHYS2741CrossRefGoogle ScholarPubMed
Bayne, T. (2018). On the axiomatic foundations of the integrated information theory of consciousness. Neuroscience of Consciousness, 4(1), niy007.Google Scholar
Bindra, D. (1959). Stimulus change, reactions to novelty, and response decrement. Psychological Review, 66, 96103.10.1037/h0046410CrossRefGoogle ScholarPubMed
Blanke, O., Landis, T., Spinelli, L., & Seeck, M. (2004). Out-of-body experience and autoscopy of neurological origin. Brain, 127, 243258.10.1093/brain/awh040CrossRefGoogle ScholarPubMed
Block, N. (2007). Consciousness, accessibility, and the mesh between psychology and neuroscience. Behavioral and Brain Sciences, 30, 481548. doi: 10.1017/S0140525X07002786CrossRefGoogle ScholarPubMed
Block, N. (2019). What is wrong with the no-report paradigm and how to fix it. Trends in Cognitive Sciences, 23, 10031013. https://doi.org/10.1016/j.tics.2019.10.001CrossRefGoogle ScholarPubMed
Boccaletti, S., Latora, V., Moreno, Y., Chavez, M., & Hwang, D.-U. (2006). Complex networks: Structure and dynamics. Physics Reports, 424, 175308. https://doi.org/10.1016/j.physrep.2005.10.009CrossRefGoogle Scholar
Braitenberg, V. (1974). Thoughts on the cerebral cortex. Journal of Theoretical Biology, 46, 421447. https://doi.org/10.1016/0022-5193(74)90007-1CrossRefGoogle ScholarPubMed
Brunel, N. (2016). Is cortical connectivity optimized for storing information? Nature Neuroscience, 19, 749755. doi: 10.1038/nn.4286CrossRefGoogle ScholarPubMed
Bullmore, E., & Sporns, O. (2009). Complex brain networks: Graph theoretical analysis of structural and functional systems. Nature Reviews Neuroscience, 10, 186198. doi: 10.1038/nrn2575CrossRefGoogle ScholarPubMed
Bullmore, E., & Sporns, O. (2012). The economy of brain network organization. Nature Reviews Neuroscience, 13, 336349. doi:10.1038/nrn3214CrossRefGoogle ScholarPubMed
Butler, A. B. (2008). Evolution of brains, cognition, and consciousness. Brain Research Bulletin, 75, 442449. https://doi.org/10.1016/j.brainresbull.2007.10.017CrossRefGoogle ScholarPubMed
Carhart-Harris, R. L., Leech, R., Hellyer, P. J., Shanahan, M., Feilding, A., Tagliazucchi, E., … Nutt, D. (2014). The entropic brain: A theory of conscious states informed by neuroimaging research with psychedelic drugs. Frontiers in Human Neuroscience, 8: Article 20(1–22). doi: 10.3389/fnhum.2014.00020.CrossRefGoogle ScholarPubMed
Casali, A. G., Gosseries, O., Rosanova, M., Boly, M., Sarasso, S., Casali, K. R., … Massimini, M. (2013). A theoretically based index of consciousness independent of sensory processing and behavior. Science Translational Medicine, 5, 198ra105. doi: 10.1126/scitranslmed.3006294CrossRefGoogle ScholarPubMed
Cattaneo, Z., & Vecchi, T. (2011). Blind vision: The neuroscience of visual impairment. The MIT Press.CrossRefGoogle Scholar
Cerullo, M. A. (2015). The problem with phi: A critique of integrated information theory. PLoS Computational Biology, 11, e1004286. doi: 10.1371/journal.pcbi.1004286CrossRefGoogle ScholarPubMed
Chalmers, D. J. (1995). Facing up to the problem of consciousness. Journal of Consciousness Studies, 2, 200219.Google Scholar
Chalmers, D. J. (1996). The conscious mind: In search of a fundamental theory. Oxford University Press.Google Scholar
Chalmers, D. J. (2016a). Panpsychism and panprotopsychism. In Bruntrup, G., & Jaskolla, L. (Eds.), Panpsychism. Contemporary perspectives (pp. 1947). Oxford University Press.CrossRefGoogle Scholar
Chalmers, D. J. (2016b). The combination problem for panpsychism. In Bruntrup, G., & Jaskolla, L. (Eds.), Panpsychism. Contemporary perspectives (pp. 179214). Oxford University Press.10.1093/acprof:oso/9780199359943.003.0008CrossRefGoogle Scholar
Cherniak, C. (2012). Neural wiring optimization. Progress in Brain Research, 195, 361371. doi: 10.1016/B978-0-444-53860-4.00017-9CrossRefGoogle ScholarPubMed
Chkloskii, D. B., Mel, B. W., & Svoboda, K. (2004). Cortical rewiring and information storage. Nature, 431, 782788. doi: doi.10.1038/nature03012CrossRefGoogle Scholar
Cleland, T. (2008). The construction of olfactory representations. In Hölscher, C., & Munk, M. (Eds.), Information processing in neuronal populations (pp. 247280). Cambridge University Press.10.1017/CBO9780511541650.011CrossRefGoogle Scholar
Cox, P. H. (1999). An initial investigation of the auditory egocenter: Evidence for a “cyclopean ear”. Doctoral dissertation, North Carolina State University, Raleigh, NC.Google Scholar
Crick, F. C., & Koch, C. (1990). Towards a neurobiological theory of consciousness. Seminars in the Neurosciences, 2, 263275.Google Scholar
Damasio, A. (1998). The feeling of what happens: Body and emotion in the making of consciousness. Harcourt, Inc.Google Scholar
Dayan, P., & Hinton, G. E. (1996). Varieties of Helmholtz machine. Neural Networks, 9, 13851403.10.1016/S0893-6080(96)00009-3CrossRefGoogle Scholar
Dean, P., Porrill, J., & Stone, J. V. (2004). Visual awareness and the cerebellum: Possible role of decorrelation control. Progress in Brain Research, 144, 6175.CrossRefGoogle ScholarPubMed
de Haan, E. H. F., Corballis, P. M., Hillyard, S. A., Marzi, C. A., Seth, A., Lamme, V. A. F., … Pinto, Y. (2020). Split-brain: What we know now and why this is important for understanding consciousness. Neuropsychology Review, 30, 224233. https://doi.org/10.1007/s11065-020-09439-3CrossRefGoogle ScholarPubMed
Dehaene, S., & Changeux, J.-P. (2011). Experimental and theoretical approaches to conscious processing. Neuron, 70, 200227. doi: 10.1016/j.neuron.2011.03.018CrossRefGoogle ScholarPubMed
Dehaene, S., Kerszberg, M., & Changeux, J.-P. (1998). A neuronal model of a global workspace in effortful cognitive tasks. Proceedings of the National Academy of Sciences USA, 95, 1452914534.10.1073/pnas.95.24.14529CrossRefGoogle ScholarPubMed
D'Mello, A. M., Gabrieli, J. D. E., & Nee, D. E. (2020). Evidence for hierarchical cognitive control in the human cerebellum. Current Biology, 30, 18811892.e3. https://doi.org/10.1016/j.cub.2020.03.028CrossRefGoogle ScholarPubMed
Doyle, J. C., & Csete, M. (2011). Architecture, constraints, and behavior. Proceedings of the National Academy of Sciences USA, 108, 1562415630.10.1073/pnas.1103557108CrossRefGoogle ScholarPubMed
Dudai, Y. (2012). The restless engram: Consolidations never end. Annual Review of Neuroscience, 35, 227247. https://doi.org/10.1146/annurev-neuro-062111-150500CrossRefGoogle ScholarPubMed
Dudai, Y., Karni, A., & Born, J. (2015). The consolidation and transformation of memory. Neuron, 88, 2032.10.1016/j.neuron.2015.09.004CrossRefGoogle Scholar
Eccles, J. C. (Ed.), (1966). Brain and conscious experience. Springer Verlag.Google Scholar
Edelman, G. M. (1989). The remembered present: A biological theory of consciousness. Basic Books.Google Scholar
Edelman, G. M., & Tononi, G. (2000). A universe of consciousness: How matter becomes imagination. Basic Books.Google Scholar
Ehrsson, H. H. (2007). The experimental induction of out-of-body experiences. Science (New York, N.Y.), 317, 1048. doi: 10.1126/science.1142175CrossRefGoogle ScholarPubMed
Ercsey-Ravasz, M., Markov, N. T., Lamy, C., Van Essen, D. C., Knoblauch, K., Toroczkai, Z., & Kennedy, H. (2013). A predictive network model of cerebral cortical connectivity based on a distance rule. Neuron, 80, 184197. http://dx.doi.org/10.1016/j.neuron.2013.07.036CrossRefGoogle ScholarPubMed
Erdös, P., & Rényi, A. (1959). On random graphs. Publicationes Mathematicae (Debrecen), 6, 290297.Google Scholar
Feinstein, J. S., Khalsa, S. S., Salomons, T. V., Prkachin, K. M., Frey-Law, L. A., Lee, J. E., Tranel, D., & Rudrauf, D. (2016). Preserved emotional awareness of pain in a patient with extensive bilateral damage to the insula, anterior cingulate, and amygdala. Brain Structure and Function, 221(3), 14991511. doi: 10.1007/s00429-014-0986-3.CrossRefGoogle Scholar
Ferrarelli, F., Massimini, M., Sarasso, S., Casali, A., Riedner, B. A., Angelini, G., … Pearce, R. A. (2010). Breakdown in cortical effective connectivity during midazolam-induced loss of consciousness. Proceedings of the National Academy of Sciences USA, 107, 26812686.CrossRefGoogle ScholarPubMed
Frankland, P. W., & Bontempi, B. (2005). The organization of recent and remote memories. Nature Reviews Neuroscience, 6, 119130.CrossRefGoogle ScholarPubMed
Friston, K. (2002). Functional integration and inference in the brain. Progress in Neurobiology, 590, 131. doi: 10.1016/s0301-0082(02)00076-xGoogle Scholar
Friston, K. (2005). A theory of cortical responses. Philosophical Transactions of the Royal Society B, 360, 815836. doi: 10.1098/rstb.2005.1622CrossRefGoogle ScholarPubMed
Gazzaniga, M. S. (1967). The split brain in man. Scientific American, 217, 2429.CrossRefGoogle Scholar
Gescheider, G. A. (1997). Psychophysics, the fundamentals (3rd ed.). Lawrence Earlbaum.Google Scholar
Ghose, T. (2016). Minds Everywhere: “Panpsychism” Takes Hold in Science. LiveScience, February 22, 2016. https://www.livescience.com/53791-what-is-consciousness.htmlGoogle Scholar
Gilbert, E. N. (1959). Random graphs. Annals of Mathematical Statistics, 30, 11411144. doi: 10.1214/aoms/1177706098CrossRefGoogle Scholar
Glasser, M. F., Coalson, T. S., Robinson, E. D., Hacker, C. D., Harwell, J., Yacoub, K., … Van Essen, D. C. (2016). A multi-modal parcellation of human cerebral cortex. Nature, 536, 171178.CrossRefGoogle ScholarPubMed
Godfrey-Smith, P. (2019). Evolving across the explanatory gap. Philosophy, Theory, and Practice in Biology, 11, 124. https://doi.org/10.3998/ptpbio.16039257.0011.001CrossRefGoogle Scholar
Green, A. (2002) A testable, geometrical theory of consciousness. Unpublished manuscript accessed April 25, 2021, at http://newempiricism.blogspot.com/2009/02/alex-greens-original-paper.htmlGoogle Scholar
Griffin, D. R. (1976). The question of animal awareness: Evolutionary continuity of mental experience. Rockefeller University Press.Google Scholar
Haines, D., & Dietrichs, E. (2012). The cerebellum – Structure and connections. In Subramony, S. H., & Dürr, A. (Eds.), Handbook of clinical neurology, vol. 103, ataxic disorders (pp. 336). Elsevier.Google Scholar
Harding, D. E. (1961). On having no head: Zen and the re-discovery of the obvious. Arkana (Penguin).Google Scholar
Harriger, L., van den Heuvel, M. P., & Sporns, O. (2012). Rich club organization of macaque cerebral cortex and its role in network communication. PLoS One, 7, e46497.CrossRefGoogle ScholarPubMed
Heller, M. A., & Kennedy, J. M. (1990). Perspective taking, pictures, and the blind. Perception & Psychophysics, 48, 459466.CrossRefGoogle ScholarPubMed
Hering, E. (1879/1942). Spatial sense and movements of the eye, transl. C.A. Radde. American Academy of Optometry (original published in 1879).Google Scholar
Hinton, G. E. (2007). To recognize shapes, first learn to generate images. Progress in Brain Research, 165, 535547.CrossRefGoogle ScholarPubMed
Hinton, G. E., & Zemel, R. S. (1994). Autoencoders, minimum description length, and Helmholtz free energy. In Cowan, J. D., Tesauro, G., & Alspector, J. (Eds.), Advances in neural information processing systems (Vol. 6, pp. 310). Morgan Kaufmann.Google Scholar
Howard, I. P., & Templeton, W. B. (1966). Human spatial orientation. Wiley Publishers.Google Scholar
Hyder, F., Fulbright, R. K., Shulman, R. G., & Rothman, D. L. (2013). Glutamatergic function in the resting awake human brain is supported by uniformly high oxidative energy. Journal of Cerebral Blood Flow & Metabolism, 33, 339347. doi: 10.1038/jcbfm.2012.207CrossRefGoogle ScholarPubMed
Iverson, G. J. (2006). Analytical methods in the theory of psychophysical discrimination. I: Inequalities, convexity and integration of just noticeable differences. Journal of Mathematical Psychology, 50, 271282. doi: 10.1016/j.jmp.2005.11.007CrossRefGoogle Scholar
James, W. (1890). The principles of psychology. Macmillan.Google Scholar
Kihlstrom, J. (1996). Perception without awareness of what is perceived, learning without awareness of what is learned. In Velmans, M. (Ed.), The science of consciousness: Psychological, neuropsychological and clinical reviews (pp. 2346). Routledge.CrossRefGoogle Scholar
Knill, D., & Richards, W. (Eds.), (1996). Perception as Bayesian inference. Cambridge University Press.CrossRefGoogle Scholar
Knoblauch, A., & Sommer, F. T. (2016). Structural plasticity, effectual connectivity, and memory in cortex. Frontiers in Neuroanatomy, 10, article63. doi: 10.3389/fnana.2016.00063CrossRefGoogle ScholarPubMed
Koch, C. (2004). The Quest for Consciousness: A Neurobiological Approach. Roberts and Company Publishers.Google Scholar
Kuhn, T. S. (1970). The structure of scientific revolutions (enlarged, 2nd ed.). University of Chicago Press.Google Scholar
Lamme, V. A. F. (2000). Neural mechanisms of visual awareness: A linking proposition. Brain and Mind, 1, 385406.CrossRefGoogle Scholar
Lamme, V. A. F. (2006). Towards a true neural stance onconsciousness. Trends in Cognitive Sciences, 10, 494501.CrossRefGoogle Scholar
Lamme, V. A. F. (2010). Discussion Paper. How neuroscience will change our view on consciousness. Cognitive Neuroscience, 1, 204240. doi: 10.1080/17588921003731586CrossRefGoogle Scholar
Latora, V., & Marchiori, M. (2001). Efficient behavior of small-world networks. Physical review letters, 87(19), 198701. https://doi.org/10.1103/PhysRevLett.87.198701CrossRefGoogle ScholarPubMed
Laughlin, S. B. (2001). Energy as a constraint on the coding and processing of sensory information. Current Opinion in Neurobiology, 11, 475480.CrossRefGoogle ScholarPubMed
Lehar, S. (2003). The world in your head: A gestalt view of the mechanism of conscious experience. Erlbaum.CrossRefGoogle Scholar
Lennie, P. (2003). The cost of cortical computation. Current Biology, 13, 493497. doi: 10.1016/S0960-9822(03)00135-0CrossRefGoogle ScholarPubMed
Lieberman, E., Hauert, C., & Nowak, M. A. (2005). Evolutionary dynamics on graphs. Nature, 433, 312316. https://doi.org/10.1038/nature03204CrossRefGoogle ScholarPubMed
Limanowski, J., & Hecht, H. (2011). Where do we stand on locating the self? Scientific Research, Psychology, 2, 312317. doi: 10.4236/psych.2011.24049Google Scholar
Llinas, R., Ribary, U., Contreras, D., & Pedroarena, C. (1998). The neuronal basis for consciousness. Philosophical Transactions of the Royal Society of London, Series B, 353, 18411849.Google ScholarPubMed
Logothetis, N. K., & Schall, J. D. (1989). Neuronal correlates of subjective visual perception. Science (New York, N.Y.), 245, 761763.CrossRefGoogle ScholarPubMed
Luria, A. R. (1973). The foundations of neuropsychology. Moscow University.Google Scholar
Mach, E. (1897). Contributions to the analysis of the sensations. Open Court.CrossRefGoogle Scholar
Magnasco, M. O., Keller, A., & Vosshall, L. B. (2015). On the dimensionality of olfactory space. BioRxiv, 2015, 118. https://doi.org/10.1101/022103Google Scholar
Mamlouk, A. M., & Martinetz, T. (2004). On the dimensions of the olfactory perception space. Neurocomputing, 58–60, 10191025. doi: 10.1016/j.neucom.2004.01.161CrossRefGoogle Scholar
Mandler, G. A. (1975). Consciousness: Respectable, useful, and probably necessary. In Solso, R. (Ed.), Information processing and cognition: The Loyola symposium (pp. 229254). Erlbaum.Google Scholar
Mansvelder, H. D., Verhoog, M. B., & Goriounova, N. A. (2019). Synaptic plasticity in human cortical circuits: Cellular mechanisms of learning and memory in the human brain? Current Opinion in Neurobiology, 54, 186193.CrossRefGoogle ScholarPubMed
Markov, N. T., Ercsey-Ravasz, M., Van Essen, D. C., Knoblauch, K., Toroczkai, Z., & Kennedy, H. (2013). Cortical high-density counterstream architectures. Science (New York, N.Y.), 342, 1238406 (1–13). doi: 10.1126/science.1238406CrossRefGoogle ScholarPubMed
Marr, D., & Poggio, T. (1977). From understanding computation to understanding neural circuitry. Neurosciences Research Program Bulletin, 15, 470488.Google Scholar
Marshall, W., Kim, H., Walker, S. I., Tononi, G., & Albantakis, L. (2017). How causal analysis can reveal autonomy in models of biological systems. Philosophical Transactions of the Royal Society A, 375, 20160358. http://dx.doi.org/10.1098/rsta.2016.0358CrossRefGoogle ScholarPubMed
Mashour, G. A. (2013). Cognitive unbinding: A neuroscientific paradigm of general anesthesia and related states of unconsciousness. Neuroscience and Biobehavioral Reviews, 37, 27512759. doi: 10.1016/j.neubiorev.2013.09.009CrossRefGoogle ScholarPubMed
Massimini, M., Ferrarelli, F., Huber, R., Esser, S. K., Singh, H., & Tononi, G. (2005). Breakdown of cortical effective connectivity during sleep. Science (New York, N.Y.), 309, 22282232.CrossRefGoogle ScholarPubMed
Mayner, W. G. P., Marshall, W., Albantakis, L., Findlay, G., Marchman, R., & Tononi, G. (2018). PyPhi: A toolbox for integrated information theory. PLoS Computational Biology, 14(7), e1006343.CrossRefGoogle ScholarPubMed
McClelland, J. L., McNaughton, B. L., & O'Reilly, R. C. (1995). Why there are complementary learning systems in the hippocampus and neocortex: Insights from the successes and failures of connectionist models of learning and memory. Psychological Review, 102, 419457.CrossRefGoogle ScholarPubMed
Mediano, P. A. M., Rosas, F., Carhart-Harris, R. L., Seth, A. K., & Barrett, A. B. (2019a). Beyond integrated information: A taxonomy of information dynamics phenomena. ArXiv190902297 Phys. Q-Bio. Available at: http://arxiv.org/abs/1909.02297. Accessed 2 May 2020.Google Scholar
Mediano, P. A. M., Seth, A. K., & Barrett, A. B. (2019b). Measuring integrated information: Comparison of candidate measures in theory and simulation. Entropy, 21, 17 (1–30). doi: 10.3390/e21010017CrossRefGoogle Scholar
Merker, B. (2004). Cortex, countercurrent context, and dimensional integration of lifetime memory. Cortex, 40, 559576.CrossRefGoogle ScholarPubMed
Merker, B. (2007). Consciousness without cerebral cortex: A challenge for neuroscience and medicine. Behavioral and Brain Sciences, 30, 63134.CrossRefGoogle ScholarPubMed
Merker, B. (2012). From probabilities to percepts: A subcortical “global best estimate buffer” as locus of phenomenal experience. In Edelman, S., Fekete, T., & Zack, N. (Eds.), Being in time. Dynamical models of phenomenal experience (pp. 3779). John Benjamins Publishers.CrossRefGoogle Scholar
Merker, B. (2013a). Body and world as phenomenal contents of the brain's reality model. In Pereira, A. Jr. & Lehmann, D. (Eds.), The unity of mind, brain and world: Current perspectives on a science of consciousness (pp. 742). Cambridge University Press.CrossRefGoogle Scholar
Merker, B. (2013b). The efference cascade, consciousness, and its self: Naturalizing the first person pivot of action control. Frontiers in Psychology, 4: article 501 (1–20). doi: 10.3389/fpsyg.2013.00501CrossRefGoogle Scholar
Merleau-Ponty, M. (2012/1945). Phenomenology of perception. D. Landes, trans. Routledge.Google Scholar
Metzinger, T. (2005). Out-of-body experiences as the origin of the concept of a “soul”. Mind and Matter, 3, 5784.Google Scholar
Milgram, S. (1967). The small world problem. Psychology Today, 2, 6067.Google Scholar
Miyashita, Y. (2004). Cognitive memory: Cellular and network machineries and their topdown control. Science (New York, N.Y.), 306, 435440.CrossRefGoogle Scholar
Modha, D. S., & Singh, R. (2010). Network architecture of the long-distance pathways in the macaque brain. Proceedings of the National Academy of Sciences USA, 107, 1348513490.CrossRefGoogle ScholarPubMed
Moerch, H. H. (2018). Is the integrated information theory of consciousness compatible with russellian panpsychism? Erkenntnis, 2018, 121. https://doi.org/10.1007/s10670-018-9995-6Google Scholar
Morsella, E., Godwin, C. A., Jantz, T. K., Krieger, S. C., & Gazzaley, A. (2016). Passive frame theory: A new synthesis. Behavioral and Brain Sciences, 39, 4470. doi: 10.1017/S0140525X15002812CrossRefGoogle ScholarPubMed
Moruzzi, G., & Magoun, H. W. (1949). Brain stem reticular formation and activation of the EEG. Electroencephalography and Clinical Neurophysiology, 1, 455473.CrossRefGoogle ScholarPubMed
Mumford, D. (1992). On the computational architecture of the neocortex. II. The role of corticocortical loops. Biological Cybernetics, 66, 241251.CrossRefGoogle Scholar
Nagel, T. (1974). What is it like to be a bat? Philosophical Review, 83, 435450.CrossRefGoogle Scholar
Neelon, M. F., Brungart, D. S., & Simpson, B. D. (2004). The isoazimuthal perception of sounds across distance: A preliminary investigation into the location of the audio egocenter. Journal of Neuroscience, 24, 76407647.CrossRefGoogle ScholarPubMed
Niven, J. E. (2016). Neuronal energy consumption: Biophysics, efficiency and evolution. Current Opinion in Neurobiology, 41, 129135.CrossRefGoogle ScholarPubMed
Oizumi, M., Albantakis, L., & Tononi, G. (2014). From the phenomenology to the mechanisms of consciousness: Integrated information theory 3.0. PLoS Computational Biology, 10(5), e1003588. doi: 10.1371/journal.pcbi.1003588CrossRefGoogle Scholar
Pakkenberg, B., & Gundersen, H. J. (1997). Neocortical neuron number in humans: Effect of sex and age. Journal of Comparative Neurology, 384, 312320.3.0.CO;2-K>CrossRefGoogle ScholarPubMed
Pascual-Leone, A., Walsh, V., & Rothwell, J. (2000). Transcranial magnetic stimulation in cognitive neuroscience – Virtual lesion, chronometry, and functional connectivity. Current Opinion in Neurobiology, 10, 232237.CrossRefGoogle ScholarPubMed
Passingham, R. E., Stephan, K. E., & Kötter, R. (2002). The anatomical basis of functional localization in the cortex. Nature Reviews Neuroscience, 3, 606616.CrossRefGoogle ScholarPubMed
Pereira, A. Jr. (2018) The projective theory of consciousness: from neuroscience to philosophical psychology, Trans/Form/Ação, Marília, 41, 199232.Google Scholar
Philipona, D., O'Reagan, J. K., & Nadal, J. P. (2003). Is there something out there? Inferring space from sensorimotor dependencies. Neural Computation, 15, 20292049.CrossRefGoogle ScholarPubMed
Philipona, D., O'Regan, J. K., Nadal, J. P., & Coenen, O. J.-M. D. (2004). Perception of the structure of the physical world using multimodal unknown sensors and effectors. Advances in Neural Information Processing Systems, 16, 945952.Google Scholar
Pinto, Y., de Haan, E. H. F., & Lamme, V. A. F. (2017a). The split-brain phenomenon revisited: A single conscious agent with split perception. Trends in Cognitive Sciences, 21, 835851. http://dx.doi.org/10.1016/j.tics.2017.09.003CrossRefGoogle Scholar
Pinto, Y., Neville, D. A., Otten, M., Corballis, P. M., Lamme, V. A. F., de Haan, E. H. F., … Fabri, M. (2017b). Split brain: Divided perception but undivided consciousness. Brain, 140, 12311237. doi: 10.1093/brain/aww358Google Scholar
Poirazi, P., & Mel, B. (2001). Impact of active dendrites and structural plasticity on the memory capacity of neural tissue. Neuron, 29, 779796. doi: 10.1016/S0896-6273(01)00252-5CrossRefGoogle ScholarPubMed
Price, D., & Barrell, J. (2012). Inner experience and neuroscience: Merging both perspectives. The MIT Press.CrossRefGoogle Scholar
Rao, R. P. N., & Ballard, D. H. (1999). Predictive coding in the visual cortex: A functional interpretation of some extra-classical receptive-field effects. Nature Neuroscience, 2, 7987.CrossRefGoogle ScholarPubMed
Read, J. C. A. (2015). The place of human psychophysics in modern neuroscience. Neuroscience, 296, 116129. http://dx.doi.org/10.1016/j.neuroscience.2014.05.036CrossRefGoogle ScholarPubMed
Roelofs, C. O. (1959). Considerations on the visual egocenter. Acta Psychologica, 16, 226234.CrossRefGoogle Scholar
Rogerson, T., Cai, D. J., Frank, A., Sano, Y., Shobe, J., Lopez-Aranda, M. F., & Silva, A. J. (2014). Synaptic tagging during memory allocation. Nature Reviews Neuroscience, 15, 157169. doi: 10.1038/nrn3667CrossRefGoogle ScholarPubMed
Romaniello, R., & Borgatti, R. (2013). Cerebellar agenesis. In Manto, M., Schmahmann, J. D., Rossi, F., Gruol, D. L., & Koibuchi, N. (Eds.), Handbook of the cerebellum and cerebellar disorders (pp. 18551872). Springer Verlag. https://doi.org/10.1007/978-94-007-1333-8_84CrossRefGoogle Scholar
Rudrauf, D. (2014). Structure-function relationships behind the phenomenon of cognitive resilience in neurology: Insights for neuroscience and medicine. Advances in Neuroscience, 2014: Article ID 462765, 128.CrossRefGoogle Scholar
Rudrauf, D., Bennequin, D., Granic, I., Landini, G., Friston, K., & Williford, K. (2017). A mathematical model of embodied consciousness. Journal of Theoretical Biology, 428, 106131.CrossRefGoogle ScholarPubMed
Rudrauf, D., Bennequin, D., & Williford, K. (2020). The moon illusion explained by the projective consciousness model. Journal of Theoretical Biology, 507, 110455 (1–20). https://doi.org/10.1016/j.jtbi.2020.110455CrossRefGoogle ScholarPubMed
Rudrauf, D., Sergeant-Perthuis, G., Belli, O., Tisserand, Y., & Di Marzo Serugendo, G. (2022). Modeling the subjective perspective of consciousness and its role in the control of behaviours. Journal of Theoretical Biology, 534, 133, Article 110957. https://doi.org/10.1016/j.jtbi.2021.110957CrossRefGoogle ScholarPubMed
Sachs, E. (1967). Dissociation of learning in rats and its similarities to dissociative states in man. In Zubin, J., & Hunt, H. (Eds.), Comparative psychopathology: Animal and human (pp. 249304). Grune and Stratton.Google Scholar
Schmolesky, M. T., Wang, Y., Hanes, D. P., Thompson, K. G., Leutgeb, S., Schall, J. D., & Leventhal, A. G. (1998). Signal timing across the macaque visual system. Journal of Neurophysiology, 79, 32723278.CrossRefGoogle ScholarPubMed
Schwartz, G. E., & Shapiro, D. (Eds.), (1978). Consciousness and self-regulation (Vol. 2). Plenum Press.CrossRefGoogle Scholar
Seth, A. K., Suzuki, K., & Critchley, H. D. (2011). An interoceptive predictive coding model of conscious presence. Frontiers in Psychology, 2, 395. doi: 10.3389/fpsyg.2011.00395Google ScholarPubMed
Shallice, T. (1972). Dual functions of consciousness. Psychological Review, 79, 383393.CrossRefGoogle ScholarPubMed
Singer, W. (1998). Consciousness and the structure of neuronal representations. Philosophical Transactions of the Royal Society of London, Series B, 353, 18291840.Google ScholarPubMed
Sokolov, E. N. (1963). Higher nervous functions: The orienting reflex. Annual Review of Physiology, 25, 545580.CrossRefGoogle ScholarPubMed
Sperry, R. (1984). Consciousness, personal identity and the divided brain. Neuropsychologia, 22, 661673.CrossRefGoogle ScholarPubMed
Sperry, R. W. (1968). Hemisphere deconnection and unity in conscious awareness. American Psychologist, 23, 723.CrossRefGoogle ScholarPubMed
Sporns, O., & Zwi, J. (2004). The small world of the cerebral cortex. Neuroinformatics, 2, 145162.CrossRefGoogle ScholarPubMed
Squire, L. R., & Alvarez, P. (1995). Retrograde amnesia and memory consolidation: A neurobiological perspective. Current Opinion in Neurobiology, 5, 169177.CrossRefGoogle ScholarPubMed
Stam, C. J. (n.d.). Connected brains: Introduction to graph theory. https://home.kpn.nl/stam7883/graph_introduction.html. Accessed 3 May 2020.Google Scholar
Starmans, C., & Bloom, P. (2012). Windows to the soul. Children and adults see the eyes as the location of the self. Cognition, 123, 313318. doi: 10.1016/j.cognition.2012.02.002CrossRefGoogle Scholar
Steingrimsson, R. (2016). Subjective intensity: Behavioral laws, numerical representations, and behavioral predictions in Luce's model of global psychophysics. Journal of Mathematical Psychology, 75, 205217. https://doi.org/10.1016/j.jmp.2016.06.004CrossRefGoogle Scholar
Steinhart, E. (2018). More precisely (2nd ed). Broadview Press.Google Scholar
Sukemiya, H., Nakamizo, S., & Ono, H. (2008). Location of the auditory egocenter in the blind and normally sighted. Perception, 37, 15871595. doi: 10.1068/p5949CrossRefGoogle Scholar
Tegmark, M. (2016). Improved measures of integrated information. PLoS Computational Biology, 12(11), e1005123. doi: 10.1371/journal.pcbi.1005123CrossRefGoogle ScholarPubMed
Tinti, C., Chiesa, S., Cavaglià, R., Dalmasso, S., Pia, L., & Schmidt, S. (2018). On my right or on your left? Spontaneous spatial perspective taking in blind people. Consciousness and Cognition, 62, 18.CrossRefGoogle ScholarPubMed
Toker, D., & Sommer, F. T. (2019). Information integration in large brain networks. PLoS Computational Biology, 15(2), e1006807. https://doi.org/10.1371/journal.pcbi.1006807CrossRefGoogle ScholarPubMed
Tononi, G. (2004). An information integration theory of consciousness. BMC Neuroscience, 5, 42 (1–22). doi: 10.1186/1471-2202-5-42CrossRefGoogle ScholarPubMed
Tononi, G. (2005). Consciousness, information integration, and the brain. Progress in Brain Research, 150, 109126.CrossRefGoogle ScholarPubMed
Tononi, G. (2008). Consciousness as integrated information: A provisional manifesto. Biological Bulletin, 215, 216242.CrossRefGoogle ScholarPubMed
Tononi, G. (2012). Integrated information theory of consciousness: An updated account. Archives Italiennes de Biologie, 150, 290326.Google Scholar
Tononi, G., Boly, M., Massimini, M., & Koch, C. (2016). Integrated information theory: From consciousness to its physical substrate. Nature Reviews Neuroscience, 17, 450461.CrossRefGoogle ScholarPubMed
Tononi, G., & Edelman, G. M. (1998). Consciousness and complexity. Science (New York, N.Y.), 282, 18461851.CrossRefGoogle ScholarPubMed
Tononi, G., & Koch, C. (2015). Consciousness: Here, there and everywhere? Philosophical Transactions of the Royal Society, B, 370, 20140167.CrossRefGoogle Scholar
Tononi, G., & Sporns, O. (2003). Measuring information integration. BMC Neuroscience, 4, 31 (1–20). http://www.biomedcentral.com/1471-2202/4/31CrossRefGoogle ScholarPubMed
Tononi, G., Sporns, O., & Edelman, G. M. (1994). A measure for brain complexity: Relating functional segregation and integration in the nervous system. Proceedings of the National Academy of Sciences, USA, 91, 50335037.CrossRefGoogle ScholarPubMed
Trehub, A. (1977). Neuronal models for cognitive processes: Networks for learning, perception and imagination. Journal of Theoretical Biology, 65, 141169.CrossRefGoogle Scholar
Trehub, A. (2007). Space, self, and the theater of consciousness. Consciousness and Cognition, 16, 310330.CrossRefGoogle Scholar
Trehub, A. (2013). Where am I? Redux. Journal of Consciousness Studies, 20, 207225.Google Scholar
Tsuchiya, N., Wilke, M., Frässle, S., & Lamme, V. A. F. (2015). No-report paradigms: Extracting the true neural correlates of consciousness. Trends in Cognitive Sciences, 19, 757780. http://dx.doi.org/10.1016/j.tics.2015.10.002CrossRefGoogle ScholarPubMed
Ullman, S. (1995). Sequence seeking and counter streams: A computational model for bidirectional information flow in the visual cortex. Cerebral Cortex, 5, 111.CrossRefGoogle ScholarPubMed
van den Heuvel, M. P., & Sporns, O. (2013). An anatomical substrate for integration among functional networks in human cortex. Journal of Neuroscience, 33, 1448914500. doi: 10.1523/JNEUROSCI.2128-13.2013CrossRefGoogle ScholarPubMed
van den Heuvel, M. P., & Sporns, O. (2019). A cross-disorder connectome landscape of brain dysconnectivity. Nature Reviews Neuroscience, 20, 435446. https://doi.org/10.1038/s41583-019-0177-6CrossRefGoogle ScholarPubMed
van den Heuvel, M. P., Stam, C. J., Kahn, R. S., & Hulshoff Pol, H. E. (2009). Efficiency of functional brain networks and intellectual performance. The Journal of Neuroscience, 29, 76197624. doi: 10.1523/JNEUROSCI.1443-09.2009CrossRefGoogle ScholarPubMed
van Gaal, S., & Lamme, V. A. F. (2012). Unconscious high level information processing: Implications for neurobiological theories of consciousness. Neuroscientist, 18, 287301.CrossRefGoogle Scholar
van Rossum, M. C. W., Turrigiano, G. G., & Nelson, S. B. (2002). Fast propagation of firing rates through layered networks of noisy neurons. Journal of Neuroscience, 22, 19561966.CrossRefGoogle ScholarPubMed
van Vugt, B., Dagnino, B., Vartak, D., Safaai, H., Panzeri, S., Dehaene, S., & Roelfsema, P. R. (2018). The threshold for conscious report: Signal loss and response bias in visual and frontal cortex. Science (New York, N.Y.), 360, 537542. https://doi.org/10.1126/science.aar7186CrossRefGoogle ScholarPubMed
Velmans, M. (1990). Consciousness, brain and the physical world. Philosophical Psychology, 3, 7799.CrossRefGoogle Scholar
Velmans, M. (1991). Is human information processing conscious? Behavioral and Brain Sciences, 14, 651726.CrossRefGoogle Scholar
Vitali, S., Glattfelder, J. B., & Battiston, S. (2011). The network of global corporate control. PLoS ONE, 6(10), e25995. doi: 10.1371/journal.pone.0025995CrossRefGoogle Scholar
Wagner, M. (2006). The geometries of visual space. Lawrence Erlbaum Associates.Google Scholar
Watts, D. J., & Strogatz, S. H. (1998). Collective dynamics of “small-world” networks. Nature, 393, 440442.CrossRefGoogle ScholarPubMed
Williford, K. (2020). Headlessness without illusions: Phenomenological undecidability and materialism. Journal of Consciousness Studies, 27, 56, 190–200.Google Scholar
Williford, K., Bennequin, D., Friston, K., & Rudrauf, D. (2018). The projective consciousness model and phenomenal selfhood. Frontiers in Psychology, 9, 2571.CrossRefGoogle ScholarPubMed
Winocur, G., & Moscovitch, M. (2011). Memory transformation and systems consolidation. Journal of the International Neuropsychological Society, 17, 766780. doi: 10.1017/S1355617711000683CrossRefGoogle ScholarPubMed
Zhang, J., & Zhen, J. (2012). Epidemic spreading on complex networks with community structure. Applied Mathematics and Computation, 219, 28292838.CrossRefGoogle Scholar