Let (Y(t), t > 0) be a d-dimensional non-homogeneous multivariate extremal process. We suppose the ith component of Y describes time-dependent behaviour of random utilities associated with the ith choice. At time t we choose the ith alternative if the ith component of Y(t) is the largest of all the components. Let J(t) be the index of the largest component at time t so J has range {1, …, d} and call {J(t)} the leader process. Let Z(t) be the value of the largest component at time t. Then the bivariate process (J(t), Z(t)} is Markov. We discuss when J(t) and Z(t) are independent, when {J(s), 0<s≦t} and Z(t) are independent and when J(t) and {Z(s), 0<s≦t} are independent. In usual circumstances, {J(t)} is Markov and particular properties are given when the underlying distribution is max-stable. In the max-stable time-homogeneous case, {J(et)} is a stationary Markov chain with stationary transition probabilities.