Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-24T14:48:15.033Z Has data issue: false hasContentIssue false

Neural code: Another breach in the wall?

Published online by Cambridge University Press:  28 November 2019

Chloé Huetz
Affiliation:
Institute of Neuroscience, NeuroPSI, UMR CNRS 9197, Université Paris-Sud, 91405Orsay, France. [email protected]@[email protected]@u-psud.frhttp://neuro-psi.cnrs.fr/
Samira Souffi
Affiliation:
Institute of Neuroscience, NeuroPSI, UMR CNRS 9197, Université Paris-Sud, 91405Orsay, France. [email protected]@[email protected]@u-psud.frhttp://neuro-psi.cnrs.fr/
Victor Adenis
Affiliation:
Institute of Neuroscience, NeuroPSI, UMR CNRS 9197, Université Paris-Sud, 91405Orsay, France. [email protected]@[email protected]@u-psud.frhttp://neuro-psi.cnrs.fr/
Jean-Marc Edeline
Affiliation:
Institute of Neuroscience, NeuroPSI, UMR CNRS 9197, Université Paris-Sud, 91405Orsay, France. [email protected]@[email protected]@u-psud.frhttp://neuro-psi.cnrs.fr/

Abstract

Brette presents arguments that query the existence of the neural code. However, he has neglected certain evidence that could be viewed as proof that a neural code operates in the brain. Albeit these proofs show a link between neural activity and cognition, we discuss why they fail to demonstrate the existence of an invariant neural code.

Type
Open Peer Commentary
Copyright
Copyright © Cambridge University Press 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adenis, V., Gourévitch, B., Mamelle, E., Recugnat, M., Stahl, P., Gnansia, D., Nguyen, Y. & Edeline, J. M. (2018) ECAP growth function to increasing pulse amplitude or pulse duration demonstrates large inter-animal variability that is reflected in auditory cortex of the guinea pig. PLoS One. 13(8):e0201771.CrossRefGoogle ScholarPubMed
Akbari, H., Khalighinejad, B., Herrero, J. L., Mehta, A. D. & Mesgarani, N. (2019) Towards reconstructing intelligible speech from the human auditory cortex. Scientific Reports 29;9(1):874.CrossRefGoogle ScholarPubMed
Bialek, W., Rieke, F., de Ruyter van Steveninck, R. R. & Warland, D. (1991) Reading a neural code. Science 252:1854–57.CrossRefGoogle Scholar
de Lavilléon, G., Lacroix, M. M., Rondi-Reig, L. & Benchenane, K. (2015) Explicit memory creation during sleep demonstrates a causal role of place cells in navigation. Nature Neuroscience 18(4):493–95.CrossRefGoogle ScholarPubMed
Ego-Stengel, V. & Wilson, M. A. (2010) Disruption of ripple-associated hippocampal activity during rest impairs spatial learning in the rat. Hippocampus 20(1):110.Google ScholarPubMed
Ferster, D., & Spruston, N. (1995) Cracking the neuronal code. Science 270(5237):756–57.CrossRefGoogle ScholarPubMed
Fritz, J, Elhilali, M, Shamma, S. (2005) Active listening: Task-dependent plasticity of spectrotemporal receptive fields in primary auditory cortex. Hearing Research 206(1/2):159–76.CrossRefGoogle ScholarPubMed
Girardeau, G., Benchenane, K., Wiener, S. I., Buzsáki, G. & Zugaro, M. B. (2009) Selective suppression of hippocampal ripples impairs spatial memory. Nature Neuroscience 12(10):1222–23.CrossRefGoogle ScholarPubMed
Holdgraf, C. R., de Heer, W., Pasley, B., Rieger, J., Crone, N., Lin, J. J., Knight, R.T., & Theunissen, F. E. (2016) Rapid tuning shifts in human auditory cortex enhance speech intelligibility. Nature Communications 7:13654.CrossRefGoogle ScholarPubMed
Mesgarani, N., Cheung, C., Johnson, K. & Chang, E. F. (2014) Phonetic feature encoding in human superior temporal gyrus. Science 343(6174):1006–10.CrossRefGoogle ScholarPubMed
Miyawaki, Y., Uchida, H., Yamashita, O., Sato, M. A., Morito, Y., Tanabe, H. C., Sadato, N. & Kamitani, Y. (2008) Visual image reconstruction from human brain activity using a combination of multiscale local image decoders. Neuron 60(5):915–29.CrossRefGoogle ScholarPubMed
Naselaris, T., Prenger, R. J., Kay, K. N., Oliver, M. & Gallant, J. L. (2009) Bayesian reconstruction of natural images from human brain activity. Neuron 63(6):902–15.CrossRefGoogle ScholarPubMed
O'Regan, J. K. & Noë, A. (2001) A sensorimotor account of vision and visual consciousness. Behavioral and Brain Sciences 24(5):939–73.CrossRefGoogle ScholarPubMed
Oxenham, A.J. (2018) How we hear: The perception and neural coding of sound. Annual Review of Psychology 69:2750.CrossRefGoogle Scholar
Panzeri, S., Harvey, C. D., Piasini, E., Latham, P. E., Fellin, T. (2017) Cracking the neural code for sensory perception by combining statistics, intervention, and behavior. Neuron 93(3):491507.CrossRefGoogle ScholarPubMed
Rieke, F., Bodnar, D. A. & Bialek, W. (1995) Naturalistic stimuli increase the rate and efficiency of information transmission by primary auditory afferents. Proceedings of the Royal Society B Biological Sciences 262(1365):259–65.Google ScholarPubMed
Salzman, C. D., Britten, K. H. & Newsome, W. T. (1990) Cortical microstimulation influences perceptual judgements of motion direction. Nature 346(6280):174–7.CrossRefGoogle ScholarPubMed
Salzman, C. D. & Newsome, W. T. (1994) Neural mechanisms for forming a perceptual decision. Science 264(5156):231–7.CrossRefGoogle ScholarPubMed
Varela, F. J., Thompson, E. & Rosch, E. (1991) The embodied mind: Cognitive science and human experience. MIT Press.CrossRefGoogle Scholar
Warland, D. K., Reinagel, P. & Meister, M. (1997) Decoding visual information from a population of retinal ganglion cells. Journal of Neurophysiology 78(5):2336–50.CrossRefGoogle ScholarPubMed
Williamson, R. S., Ahrens, M. B., Linden, J. F. & Sahani, M. (2016) Input-specific gain modulation by local sensory context shapes cortical and thalamic responses to complex sounds. Neuron 91(2):467–81.CrossRefGoogle ScholarPubMed
Woolley, S. M., Gill, P. R., Fremouw, T. & Theunissen, F. E. (2009) Functional groups in the avian auditory system. Journal of Neuroscience 29(9):2780–93.CrossRefGoogle ScholarPubMed