Hostname: page-component-6bf8c574d5-mggfc Total loading time: 0 Render date: 2025-02-16T14:01:05.494Z Has data issue: false hasContentIssue false

Chern class formulas for classical-type degeneracy loci

Published online by Cambridge University Press:  18 July 2018

David Anderson
Affiliation:
Department of Mathematics, The Ohio State University, Columbus, OH 43210, USA email [email protected]
William Fulton
Affiliation:
Department of Mathematics, University of Michigan, Ann Arbor, MI 48109, USA email [email protected]

Abstract

Employing a simple and direct geometric approach, we prove formulas for a large class of degeneracy loci in types B, C, and D, including those coming from all isotropic Grassmannians. The results unify and generalize previous Pfaffian and determinantal formulas. Specializing to the Grassmannian case, we recover the remarkable theta- and eta-polynomials of Buch, Kresch, Tamvakis, and Wilson. Our method yields streamlined proofs which proceed in parallel for all four classical types, substantially simplifying previous work on the subject. In an appendix, we develop some foundational algebra and prove several Pfaffian identities. Another appendix establishes a basic formula for classes in quadric bundles.

Type
Research Article
Copyright
© The Authors 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

DA was partially supported by NSF grant DMS-1502201.

References

Anderson, D., Chern class formulas for G 2 Schubert loci , Trans. Amer. Math. Soc. 363 (2011), 66156646.Google Scholar
Anderson, D. and Fulton, W., Degeneracy loci, Pfaffians, and vexillary signed permutations in types B, C, and D, Preprint (2012), arXiv:1210.2066.Google Scholar
Billey, S. and Haiman, M., Schubert polynomials for the classical groups , J. Amer. Math. Soc. 8 (1995), 443482.Google Scholar
Billey, S. and Lam, T. K., Vexillary elements in the hyperoctahedral group , J. Algebraic Combin. 8 (1998), 139152.Google Scholar
Björner, A. and Brenti, F., Combinatorics of Coxeter groups (Springer, Berlin, 2005).Google Scholar
Buch, A., Kresch, A. and Tamvakis, H., A Giambelli formula for even orthogonal Grassmannians , J. Reine Angew. Math. 708 (2015), 1748.Google Scholar
Buch, A., Kresch, A. and Tamvakis, H., A Giambelli formula for isotropic Grassmannians , Selecta Math. (N.S.) 23 (2017), 869914.Google Scholar
Edidin, D. and Graham, W., Characteristic classes and quadric bundles , Duke Math. J. 78 (1995), 277299.Google Scholar
Fulton, W., Flags, Schubert polynomials, degeneracy loci, and determinantal formulas , Duke Math. J. 65 (1992), 381420.Google Scholar
Fulton, W., Intersection theory, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) Folge, vol. 2, second edition (Springer, New York, 1998).Google Scholar
Fulton, W. and Pragacz, P., Schubert varieties and degeneracy loci, Lecture Notes in Mathematics, vol. 1689 (Springer, Berlin, 1998).Google Scholar
Garsia, A. M., Orthogonality of Milne’s polynomials and raising operators , Discrete Math. 99 (1992), 247264.Google Scholar
Ikeda, T. and Matsumura, T., Pfaffian sum formula for the symplectic Grassmannians , Math. Z. 280 (2015), 269306.Google Scholar
Ikeda, T., Mihalcea, L. and Naruse, H., Double Schubert polynomials for the classical groups , Adv. Math. 226 (2011), 840886.Google Scholar
Kazarian, M., On Lagrange and symmetric degeneracy loci, Preprint, Arnold Seminar (2000), http://www.newton.ac.uk/preprints/NI00028.pdf.Google Scholar
Kempf, G. and Laksov, D., The determinantal formula of Schubert calculus , Acta Math. 132 (1974), 153162.Google Scholar
Knuth, D., Overlapping Pfaffians , Electron. J. Combin. 3 (1996), 13 pp.Google Scholar
Lascoux, A. and Pragacz, P., Schur Q-functions and degeneracy locus formulas for morphisms with symmetries , in Recent progress in intersection theory, Bologna, 1997, Trends in Mathematics (Birkhäuser, Boston, 2000), 239263.Google Scholar
Lascoux, A. and Schützenberger, M.-P., Polynômes de Schubert , C. R. Acad. Sci. Paris Sér. I 294 (1982), 447450.Google Scholar
Macdonald, I. G., Symmetric functions and hall polynomials, second edition (Oxford University Press, Oxford, 1995).Google Scholar
Pragacz, P., Enumerative geometry of degeneracy loci , Ann. Sci. Éc. Norm. Supér. (4) 21 (1988), 413454.Google Scholar
Pragacz, P., Algebro-geometric applications of Schur S- and Q-polynomials , in Topics in invariant theory, Paris, 1989/1990, Lecture Notes in Mathematics vol. 1478 (Springer, Berlin, 1991), 130191.Google Scholar
Pragacz, P. and Ratajski, J., Formulas for Lagrangian and orthogonal degeneracy loci; ˜Q-polynomial approach , Compositio Math. 107 (1997), 1187.Google Scholar
Silva, J. L., Combinatorics on Schubert varieties, PhD thesis, Universidade Estadual de Campinas (2017).Google Scholar
Tamvakis, H., A Giambelli formula for classical G/P spaces , J. Algebraic Geom. 23 (2014), 245278.Google Scholar
Tamvakis, H., Giambelli and degeneracy locus formulas for classical G/P spaces , Mosc. Math. J. 16 (2016), 125177.Google Scholar
Tamvakis, H., Double eta polynomials and equivariant Giambelli formulas , J. Lond. Math. Soc. (2) 94 (2016), 209229.Google Scholar
Tamvakis, H. and Wilson, E., Double theta polynomials and equivariant Giambelli formulas , Math. Proc. Cambridge Philos. Soc. 160 (2016), 353377.Google Scholar
Wilson, E., Equivariant Giambelli formulae for Grassmannians, PhD thesis, University of Maryland (2010).Google Scholar