1. Introduction
Helfrich functional dates back to Helfrich’s seminal work [Reference Helfrich7], which proposed the functional model of the elastic lipid bilayer or membrane. Let $f\;:\;M \rightarrow \mathbb{R}^{3}$ be a smooth immersed surface in $\mathbb{R}^{3}$ , the Helfrich functional (see [Reference Deckelnick, Doemeland and Grunau5]) is given by:
where $H$ denotes the mean curvature vector of surface, $K$ is the Gaussian curvature, $\textrm{d} M$ is the area measure of the induced metric, $\gamma \in \mathbb{R}$ is a constant bending rigidity, $\lambda \geqslant 0$ is the weight factor of the area functional, and $c_{0}\in \mathbb{R}$ is a given spontaneous curvature caused by asymmetry between the two layers of the membrane. The functional with zero spontaneous curvature can be considered as a weighted sum of the Willmore functional and the area, which represent the bending energy and the surface energy, respectively. The critical surfaces of the first variation of $\mathcal{H}_{\lambda _{1},\lambda _{2}}(f)$ are called Helfrich surfaces. In recent years, many important researches have been developed in the study of the functional in geometry. Examples include the existence and regularity of solutions for Helfrich immersion from surfaces into $\mathbb{R}^{3}$ (see, for instance, [Reference Choksi and Veneroni3, Reference Deckelnick, Doemeland and Grunau5, Reference Eichmann6, Reference Mondino and Scharrer13, Reference Tu16]), the classification ([Reference Bernard, Wheeler and Wheeler1, Reference McCoy and Wheeler15]) of Helfrich surfaces in $\mathbb{R}^{3}$ .
It is well know that the Willmore functional is conformal invariant and has been a field of active research since the work of Willmore [Reference Willmore17]. And many of the techniques developed have played important roles in geomotry. Despite this, the functional for a immersed surface in complex manifolds is relatively less discussed. As noted in [Reference Castro and Urbano2], Castro and Urbano proved the Whitney sphere is the only Willmore Lagrangian surface of genus zero in $\mathbb{C}^{2}$ . Hu and Li [Reference Hu and Li9] considered higher-dimensional case, and they proved Whitney spheres are Willmore submanifolds of $\mathbb{C}^{n}$ if and only if $n = 2$ and constructed examples of Willmore Lagrangian spheres in $\mathbb{C}^{n}$ for all $n \geq 2$ . Immersions from surfaces into the complex projective plane $\mathbb{C}P^{2}$ are also considered. In [Reference Hu and Li8], Hu and Li calculate the Euler–Lagrangian equation of the Willmore functional for an $n$ -dimensional submanifold in an $(n + p)$ -dimensional Riemannian manifold. As a corollary, the authors have given the Euler–Lagrangian equation of the Willmore functional for an immersed surface in complex projective plane $\mathbb{C}P^{2}$ . In [Reference Montiel and Urbano14], Montiel and Urbano studied the Willmore functional for compact surface $M$ in $\mathbb{C}P^{2}$ . In this case, the Willmore functional is given by:
where $C$ denotes the Kähler function of $M$ in $\mathbb{C}P^{2}$ . The authors decomposed $W$ into two global conformal invariants:
They proved that $W^{-}\geqslant 4\pi \mu -2\int |C|\textrm{d} M$ , where $\mu$ denotes the maximum multiplicity of the immersion. The equality holds if and only if $\mu =1$ and $M$ is either the complex projective line or totally geodesic real projective plane, or $\mu =2$ and $M$ is the Lagrangian Whitney sphere. Moreover, Montiel and Urbano obtained $W^{-}\geqslant 8\pi ^{2}/3\sqrt{3}$ for all homogeneous tori in $\mathbb{C}P^{2}$ and conjectured that the Clifford torus attains the minimum of $W^{-}$ among all Lagrangian tori in $\mathbb{C}P^{2}$ . In this regard, Ma, Mironov, and Zuo [Reference Ma, Mironov and Zuo11] studied a family of Hamiltonian-minimal Lagrangian tori and proved Montiel–Urbano’s conjecture is valid. For arbitrary Lagrangian tori, the conjecture remains open.
In this paper, we will focus on the Helfrich functional for surfaces in the complex projective plane $\mathbb{C}P^{2}$ (with holomorphic sectional curvature 4). Let $f\;:\; M\rightarrow \mathbb{C}P^{2}$ be an isometric immersion of a compact surface in $\mathbb{C}P^{2}$ . For simplicity, we assume that the spontaneous curvature $c_{0}=0$ . The Helfrich functional is defined by:
where $\lambda _{1}, \,\lambda _{2}\in \mathbb{R}$ and $\lambda _{1}\geqslant 0$ . When $\lambda _{1}=1, \lambda _{2}=3$ , the functional reduces to Willmore functioal $W$ . When $\lambda _{1}=0, \lambda _{2}=6$ , the functional reduces to $W^{+}$ and when $\lambda _{1}=2, \lambda _{2}=0$ , reduces to $W^{-}$ . We first give the Euler–Lagrange equation of Helfrich functional $\mathcal{H}_{\lambda _{1},\lambda _{2}}(f)$ . This can also be derived by Hu–Li’s result (See [Reference Hu and Li8]).
Let $\{e_{A}\}_{1\leq A\leq 4}$ be a local orthonormal frame on $\mathbb{C}P^{2}$ such that when restricts to $M$ , $\{e_{1}, e_{2}\}$ is a local orthonormal basis for $TM$ . Then the Kähler function $C$ on $M$ can be given by $C=\langle Je_{1},e_{2}\rangle$ . Without loss of generality, we assume that $\{e_{A}\}$ satisfy
Then, we have
Theorem 1.1. Let $f\;:\; M\rightarrow \mathbb{C}P^{2}$ be an isometric immersion of a compact surface in the complex projective plane $\mathbb{C}P^{2}$ . Then, $M$ is a Helfrich surface if and only if
where $C$ denotes the Kähler function of $M$ in $\mathbb{C}P^{2}$ , $C_{,i}\,(1\leq i\leq 2)$ denote the first covariant derivatives of $C$ , and $H^{\beta }\,(3\leq \beta \leq 4)$ are the coefficient of the mean curvature vector $H$ of $M$ .
It follows from the above Euler–Lagrange equation that every minimal surfaces with constant Kähler angle is Helfrich surface. In particular, the complex curve and Lagrangian minimal surface in $\mathbb{C}P^{2}$ are Helfrich surfaces.
We, on the other hand, will focus on the homogeneous tori in $\mathbb{C}P^{2}$ . We are going to show the homogeneous Helfrich tori in $\mathbb{C}P^{2}$ and compute the Helfrich energy for the homogenous tori, thereby determining the energy minimizers within this class of surfaces.
Theorem 1.2. Let $T_{r_{1},r_{2},r_{3}}$ be a homogeneous torus in $\mathbb{C}P^{2}$ . Then, $T_{r_{1},r_{2},r_{3}}$ is a Helfrich surface if and only if
-
1. When $0\leqslant \lambda _{1}\leqslant \frac{5}{2}$ , $T_{r_{1},r_{2},r_{3}}=T_{\frac{\sqrt{3}}{3},\frac{\sqrt{3}}{3},\frac{\sqrt{3}}{3}}.$
-
2. When $\lambda _{1}\gt \frac{5}{2}$ , $T_{r_{1},r_{2},r_{3}}=T_{\frac{\sqrt{3}}{3},\frac{\sqrt{3}}{3},\frac{\sqrt{3}}{3}}$ or $T_{r_{1},r_{2},r_{3}}=T_{\sqrt{\frac{1}{4\lambda _{1}-9}}, \sqrt{\frac{2\lambda _{1}-5}{4\lambda _{1}-9}},\sqrt{\frac{2\lambda _{1}-5}{4\lambda _{1}-9}}}$ .
Theorem 1.3. Let $T_{r_{1},r_{2},r_{3}}$ be a homogeneous torus in $\mathbb{C}P^{2}$ . Then,
-
1. When $0\leqslant \lambda _{1}\leqslant 3$ ,
\begin{equation*}\mathcal {H}_{\lambda _{1},\lambda _{2}}(f)\geqslant \frac {4\lambda _{1}\pi ^{2}}{3\sqrt {3}}\end{equation*}with equality holding if and only if $T_{r_{1},r_{2},r_{3}}=T_{\frac{\sqrt{3}}{3},\frac{\sqrt{3}}{3},\frac{\sqrt{3}}{3}}$ . -
2. When $\lambda _{1}\gt 3$ ,
\begin{equation*}\mathcal {H}_{\lambda _{1},\lambda _{2}}(f)\geqslant \frac {(4\lambda _{1}-8)\pi ^{2}}{\sqrt {4\lambda _{1}-9}}\end{equation*}with equality holding if and only if $T_{r_{1},r_{2},r_{3}}=T_{\sqrt{\frac{1}{4\lambda _{1}-9}}, \sqrt{\frac{2\lambda _{1}-5}{4\lambda _{1}-9}},\sqrt{\frac{2\lambda _{1}-5}{4\lambda _{1}-9}}}$ .
The arrangement of this paper is as follows. In Section 2, we recall the basic theory of surfaces in $\mathbb{C}P^{2}$ . In Section 3, we calculate the Euler–Lagrangian equation of the critical surfaces of $\mathcal{H}_{\lambda _{1},\lambda _{2}}(f)$ . Then, in Section 4, we consider the homogeneous tori in $\mathbb{C}P^{2}$ and give the proof of Theorems 1.2 and 1.3.
2. Preliminaries
In this section, we will review the moving frame method for surfaces in $\mathbb{C}P^{2}$ following Chern and Wolfson (for more details, see [Reference Chern and Wolfson4]). In the paper, we will adopt the following ranges of indices:
Let $\langle,\rangle$ be the hermitian product in $\mathbb{C}^{3}$ , that is,
for any $Z,W\in \mathbb{C}^{3}$ , where $\overline{W}$ denotes the conjugate of $W$ . Let $\mathbb{C}P^{2}$ be the complex projective plane with its canonical Fubini–Study metric of constant holomorphic sectional curvature 4. Then,
where $\Pi \;:\; S^{5}\rightarrow \mathbb{C}P^{2}$ is the Hopf projection. We denote $g$ by its Fubini–Study metric and $J$ by its complex structure induced by $\mathbb{C}^{3}$ on $\mathbb{C}P^{2}$ . Then,
The Kähler form $\Omega$ on $\mathbb{C}P^{2}$ is defined by:
Let $\{Z_{0},Z_{1},Z_{2}\}$ be a unitary frames in $\mathbb{C}^{3}$ . Then, we have
where $\psi _{a\overline{b}}=\overline{\psi _{\overline{a}b}}$ is connection 1-form and satisfies structure equation:
Moreover, the Fubini–Study metric (2.1) can be written as:
On the other hand, let $\{\varsigma _{i}\}$ be a unitary frames in $\mathbb{C}P^{2}$ with dual frames $\{\omega _{i}\}$ , the structure equation of $\mathbb{C}P^{2}$ can be written as:
with $\{\omega _{i\overline{j}}\}$ being the unitary connection forms with respect to $\{\omega _{i}\}$ . We have then
Combining with (2.5) and (2.7) and (2.4) and (2.6), we get
Let $f\;:\; M\rightarrow \mathbb{C}P^{2}$ be an isometric immersion of a compact surface $M$ in the complex projective plane $\mathbb{C}P^{2}$ . The Kähler function $C$ on $M$ is defined by:
where $\textrm{d} M$ is the area form on $M$ . The surface $f$ is holomorphic, anti-holomorphic, or Lagrangian, respectively, depending on $C\equiv 1,-1$ , or $0$ . Now, we consider $M\subset \mathbb{C}P^{2}$ first from the Riemannian geometry version and then from the complex version due to Chern and Wolfson [Reference Chern and Wolfson4].
Let us choose a (new) local orthonormal frame $\{e_{A}\}$ of $\mathbb{C}P^{2}$ with its dual $\{\theta _{A}\}$ such that restricting to $M$ , $\{e_{i}\}$ is a local orthonormal basis of $TM$ . Then, we have restricted to $M$
The second fundamental form $II$ and the mean curvature vector $H$ are defined by:
Let $\overline{\nabla }$ be the Riemannian connection of $\mathbb{C}P^{2}$ , and let $\nabla$ and $\nabla ^{\perp }$ be the induced connection and normal connection of $M$ , respectively. The covariant derivative and Laplacian of $H$ on the normal bundle of $M$ are, respectively, defined as:
Let $\overline{R}_{ABCD}$ be the Riemannian curvature tensor of $\mathbb{C}P^{2}$ , we have then
Now, let us recall the complex version of the geometry of $M$ which is due to Chern and Wolfson [Reference Chern and Wolfson4]. Set $\phi =\theta _{1}+i\theta _{2}$ . It defines a complex structure on $M$ . The induced metric on $M$ is of the form:
Then after a normalization of $\{\varsigma _i\}$ if necessary ([Reference Chern and Wolfson4, p. 66]), we can assume that there exist complex-valued smooth functions $s,t$ which satisfy $|s|^{2}+|t|^{2}=1$ such that
In particular, setting $|s|=\cos \dfrac{\alpha }{2}, \,|t|=\sin \dfrac{\alpha }{2}$ , one has then $C=\cos \alpha$ with $0\leq \alpha \leq \pi$ . Now we have, along $M$ ,
Taking exterior derivative of the first term of (2.15), we get
Set
then the complex-valued second fundamental forms can be given by:
Lemma 2.1. The coefficients $a,\,b,\,c$ of the complex-valued second fundamental forms $II^{\mathbb{C}}$ satisfy
where $\text{Re}$ and $\text{Im}$ denote, respectively, the real and imaginary parts.
Proof. Taking exterior derivative of the second term of (2.15), we get
Then from (2.15), (2.16), (2.17), and (2.18), we have that
and (2.20) follows.
Remark 2.2. Note that we can re-choose the unitary coframe $\{\omega _{1},\omega _{2}\}$ such that
The Kähler angle $\alpha$ is smooth at the points with $0\lt \alpha \lt \pi$ . At the points $\alpha =0$ or $\pi$ , $\alpha$ could be only continuous. Moreover, under the assumption of (2.21), we can obtain by (2.13) that
and hence
So, we have
from which we get
3. Euler–Lagrange equation of Helfrich functional
Let $f(p,t)\;:\; M\times (\!-\!\epsilon,\epsilon )\rightarrow \mathbb{C}P^{2}$ be a variation of $M$ with $f_{0}(p)=f(p)$ . Here, we denote by $f_t(p)=f(p,t)\;:\;M\rightarrow \mathbb{C}P^{2}$ for $t\in (\!-\!\epsilon,\epsilon )$ . Let $\{x_{1},x_{2},t\}$ be a local coordinate system around the point $(p,0)$ such that $\{\textrm{d} f\!\left(\dfrac{\partial }{\partial x_{1}}\right),\textrm{d} f\!\left(\dfrac{\partial }{\partial x_{2}}\right)\}|_p$ is an orthonormal basis of $T_{p}M$ . Set $\bar V=\textrm{d} f_{t}\!\left(\dfrac{\partial }{\partial t}\right), X_{i}=\textrm{d} f_{t}\!\left(\frac{\partial }{\partial x_{i}}\right)$ . Then, we have the induced metric of $ f_{t}$ and its area form as follows:
Then $(g_0)_{ij}(p)=g_{ij}(p)\delta _{ij}$ . Set $\tilde e_{i}=\textrm{d} f_{t}|_{t=0} \left(\dfrac{\partial }{\partial x_{i}}\right)$ and $V=\textrm{d} f_{t}|_{t=0}\left(\dfrac{\partial }{\partial t}\right)=V^{\top }+V^{\perp }$ with $V^{\top }\in \Gamma (TM)$ and $V^{\perp }\in \Gamma (T^{\perp }M)$ .
We first consider $\dfrac{\partial (\sqrt{G_{t}})}{\partial t}|_{t=0}$ and $\dfrac{\partial |H|^{2}}{\partial t}|_{t=0}$ . It is well known that
Now we consider $\dfrac{\partial |H|^{2}}{\partial t}|_{t=0}$ . It follows the definition of the mean curvature vector that
where $((g_{t})^{ij})$ denotes the inverse matrix of $((g_{t})_{ij})$ . Thus, we have at the point $p$ that
Differentiating the formula $\sum \limits _{j}g^{ij}g_{jk}=\delta _{ik}$ and using the fact that $\left[\dfrac{\partial }{\partial t}, \dfrac{\partial }{\partial x_{i}}\right]=0$ , we get
Also, we have
Since $\dfrac{\partial |H|^{2}}{\partial t}=g\left(H,2\dfrac{\partial H}{\partial t}\right)$ , we only need to know the normal part of (3.4). So, by a direct computation we have
Here, we used the fact that $(\overline{\nabla }_{V^{\bot }}\nabla _{\tilde e_i}\tilde e_i)^{\bot } =\nabla _{\nabla _{\tilde e_i}\tilde e_i}^{\bot }V^{\bot }$ . Finally, substituting (3.3) and (3.4) into (3.2) and using (3.5), (3.6), and (2.11), we obtain at the point $p$ that
Here, we used
Next, we consider $\dfrac{\partial (C_{t})^2}{\partial t}|_{t=0}$ . First for an oriented orthonormal basis $\{e_1, e_2\}$ of $TM$ , set
It is direct to check that $X_{V}$ is independent of the choice $\{e_{1},e_{2}\}$ , and hence it defines a smooth vector field on $M$ with
The definition of the Kähler function means that
So we get, at the point $p$ ,
Since $[\tilde e_1,\tilde e_2]|_p=0$ and $[V,\tilde e_i]|_p=0$ for $1\leq i\leq 2$ , we have at the point $p$ that
Substituting (3.1) and (3.10) into (3.9), we obtain at the point $p$ that
Noting that the right sides of (3.7) and (3.11) are independent of the coordinates and hence valid at any point of $M$ . Thus, from (3.1), (3.7), and (3.11), we get
Furthermore, it follows from the divergence theorem that
Substituting (3.13)–(3.16) into (3.12) and noting
we obtain that
where $C_{,i}\,(1\leq i\leq 2)$ denote the first covariant derivatives of $C$ . This implies that the Euler–Lagrange equation of $\mathcal{H}_{\lambda _{1},\lambda _{2}}(f)$ is
This gives the proof of Theorem 1.1.
Remark 3.1. When $\lambda _{2}=0$ , the function reduces to $\mathcal{H}_{\lambda _{1},\lambda _{2}}(f)=\int _{M}(|H|^{2}+\lambda _{1})\textrm{d} M$ . In this situation, if $M$ is minimal, we obtain from (3.18) that $M$ is Helfrich surface.
Remark 3.2. When $C=constant$ , that is, $M$ has constant Kähler angle. If $M$ is minimal, then $M$ is Helfrich surface.
Combing this we have
Corollary 3.3. The complex curves and Lagrangian minimal surfaces in complex projective plane $\mathbb{C}P^{2}$ are Helfrich surfaces.
Corollary 3.4. Let $f\;:\; M\rightarrow \mathbb{C}P^{2}$ be an isometric immersion of a compact surface in $\mathbb{C}P^{2}$ . If $M$ is a Helfrich surface for any $\lambda _{1},\lambda _{2}$ . Then $M$ is minimal.
4. Homogeneous tori in $\mathbb{C}P^{2}$
In this section, we consider the homogeneous tori in $\mathbb{C}P^{2}$ .
4.1. The geometry of homogeneous tori
The definition of the homogeneous torus in $\mathbb{C}P^{2}$ is given by the image of the Hopf projection:
for positive numbers $r_{1}, r_{2}, r_{3}$ that satisfy $r_{1}^{2}+r_{2}^{2}+r_{3}^{2}=1$ . In this case, we also call $T_{\frac{\sqrt{3}}{3},\frac{\sqrt{3}}{3},\frac{\sqrt{3}}{3}}$ the Clifford torus. We note that Ma, Mironov, and Zuo in [Reference Ma, Mironov and Zuo11] gave a basis of the period module for the homogeneous tori. Here, we discuss the conformal structure of the homogeneous tori for completeness.
Taking into account the definition of $T_{r_{1},r_{2},r_{3}}$ , we assume that the homogeneous coordinate of $T_{r_{1},r_{2},r_{3}}$ is
where $\varphi,\,\psi \in \mathbb{R}$ . Then we have from (2.1) that
Lemma 4.1. The induced metric of $T_{r_{1},r_{2},r_{3}}$ in $\mathbb{C}P^{2}$ is
Setting
Then
and hence $z=u+iv$ gives a complex coordinate of $T_{r_{1},r_{2},r_{3}}$ . Also, from (4.2) we get a basis $(\omega _{1}, \omega _{2})$ of the period module for $T_{r_{1},r_{2},r_{3}}$ with
So without loss of generality, we assume $r_{3}\geqslant r_{1}\geqslant r_{2}$ , $k=\frac{r_{3}}{r_{1}}$ , then
gives the module space for $T_{r_{1},r_{2},r_{3}}$ (see the shaded part of Figure 1).
In particular, for Clifford torus $T_{\frac{\sqrt{3}}{3},\frac{\sqrt{3}}{3},\frac{\sqrt{3}}{3}}$ , $\tau =\dfrac{1}{2}+i\dfrac{\sqrt{3}}{2}$ .
Now, we are going to consider the second fundamental forms of $T_{r_{1},r_{2},r_{3}}$ in $\mathbb{C}P^{2}$ .
Lemma 4.2. The second fundamental forms of $T_{r_{1},r_{2},r_{3}}$ satisfy
Proof. Set $\phi =r_{2}r_{3}(\textrm{d} u+i\textrm{d} v)$ , then the induced metric of $T_{r_{1},r_{2},r_{3}}$ can be written as:
Let $\{Z_{0},Z_{1},Z_{2}\}$ be a unitary frames in $\mathbb{C}^{3}$ . Then $\textrm{d} Z_{0}=\sum \limits _{a}\psi _{0\overline{a}}Z_{a}$ with $\psi _{a\overline{b}}=\overline{\psi _{\overline{a}b}}$ . From this, we get
And hence we obtain from $|Z_{1}|=|Z_{2}|=1$ that
Let $\{\omega _{i}\}$ be an unitary coframe in $\mathbb{C}P^{2}$ such that restricting to $M$
Then from (2.8) and (4.5), we have
Now, using the fact $\psi _{a\overline{b}}=\langle dZ_{a},Z_{b}\rangle$ , then from (2.9) we get
and so
Thus, we obtain from (2.17) and (2.18) that the coefficients of the complex-valued second fundamental forms (see (2.19)) of $T_{r_{1},r_{2},r_{3}}$ are
Using Lemma 2.1, (4.3) and (4.4) follow directly.
Remark 4.3. The above proof shows that $s=t=\dfrac{\sqrt{2}}{2}$ , that is, $\cos \alpha =\dfrac{\sqrt{2}}{2}$ and the Kähler function $C=\cos \alpha =0$ , which also implies that the homogeneous torus in $\mathbb{C}P^{2}$ is Lagrangian.
Now we discuss the classification the homogeneous Helfrich tori in $\mathbb{C}P^{2}$ .
Theorem 4.4. $T_{r_{1},r_{2},r_{3}}$ is a Helfrich surface if and only if
-
1. When $0\leqslant \lambda _{1}\leqslant \dfrac{5}{2}$ , $T_{r_{1},r_{2},r_{3}}=T_{\frac{\sqrt{3}}{3},\frac{\sqrt{3}}{3},\frac{\sqrt{3}}{3}}.$
-
2. When $\lambda _{1}\gt \dfrac{5}{2}$ , $T_{r_{1},r_{2},r_{3}}=T_{\frac{\sqrt{3}}{3},\frac{\sqrt{3}}{3},\frac{\sqrt{3}}{3}}$ or $T_{r_{1},r_{2},r_{3}}=T_{\sqrt{\frac{1}{4\lambda _{1}-9}}, \sqrt{\frac{2\lambda _{1}-5}{4\lambda _{1}-9}},\sqrt{\frac{2\lambda _{1}-5}{4\lambda _{1}-9}}}$ .
Proof. By Lemma 4.2, we get the coefficients of the mean curvature of $T_{r_{1},r_{2},r_{3}}$ as follows:
And hence the norm square of the mean curvature is
Thus, substituting (4.10) and (4.11) into the Euler–Lagrange equation (3.18) and using the fact $C=\cos \alpha \equiv 0$ , we get that
By solving the equation above, we obtain
-
1. When $0\leqslant \lambda _{1}\leqslant \dfrac{5}{2}$ , $T_{r_{1},r_{2},r_{3}}=T_{\frac{\sqrt{3}}{3},\frac{\sqrt{3}}{3},\frac{\sqrt{3}}{3}}.$
-
2. When $\lambda _{1}\gt \dfrac{5}{2}$ , $T_{r_{1},r_{2},r_{3}}=T_{\frac{\sqrt{3}}{3},\frac{\sqrt{3}}{3},\frac{\sqrt{3}}{3}} \,\text{or} \,T_{r_{1},r_{2},r_{3}}=T_{\sqrt{\frac{1}{4\lambda _{1}-9}}, \sqrt{\frac{2\lambda _{1}-5}{4\lambda _{1}-9}},\sqrt{\frac{2\lambda _{1}-5}{4\lambda _{1}-9}}}.$
4.2. The Helfrich energy of homogeneous tori
Proposition 4.5. The Helfrich energy of $T_{r_{1},r_{2},r_{3}}$ is
Proof. From Lemma 4.1, we have $\textrm{d} T_{r_{1},r_{2},r_{3}}=r_{1}r_{2}r_{3}\textrm{d}\varphi \textrm{d}\psi$ . By using of (4.11), (4.12) follows directly.
Now we consider the lower bound of $\mathcal{H}_{\lambda _{1},\lambda _{2}}(f)$ for $T_{r_{1},r_{2},r_{3}}$ .
Theorem 4.6. The Helfrich energy of $T_{r_{1},r_{2},r_{3}}$ satisfies
-
1. When $0\leqslant \lambda _{1}\leqslant 3$ ,
\begin{equation*}\mathcal {H}_{\lambda _{1},\lambda _{2}}(f)\geqslant \frac {4\lambda _{1}\pi ^{2}}{3\sqrt {3}},\end{equation*}and the equality holds if and only if $r_{1}=r_{2}=r_{3}=\dfrac{\sqrt{3}}{3}$ . -
2. When $\lambda _{1}\gt 3$ ,
\begin{equation*}\mathcal {H}_{\lambda _{1},\lambda _{2}}(f)\geqslant \frac {(4\lambda _{1}-8)\pi ^{2}}{\sqrt {4\lambda _{1}-9}},\end{equation*}and the equality holds if and only if $r_{1}=\sqrt{\dfrac{1}{4\lambda _{1}-9}},\,r_{2}=r_{3} =\sqrt{\dfrac{2\lambda _{1}-5}{4\lambda _{1}-9}}.$
Proof. Computing the extreme value of (4.12) under the constraint $r_{1}^{2}+r_{2}^{2}+r_{3}^{2}=1$ yields
A straightforward calculation shows that
-
1. When $0\leqslant \lambda _{1}\leqslant \dfrac{5}{2}$ ,
\begin{equation*}T_{r_{1},r_{2},r_{3}}=T_{\frac {\sqrt {3}}{3},\frac {\sqrt {3}}{3},\frac {\sqrt {3}}{3}}, \,\mathcal {H}_{\lambda _{1},\lambda _{2}}(f)=\frac {4\lambda _{1}\pi ^{2}}{3\sqrt {3}}.\end{equation*} -
2. When $\lambda _{1}\gt \dfrac{5}{2}$ ,
\begin{equation*}T_{r_{1},r_{2},r_{3}}=T_{\frac {\sqrt {3}}{3},\frac {\sqrt {3}}{3},\frac {\sqrt {3}}{3}}, \,\mathcal {H}_{\lambda _{1},\lambda _{2}}(f)=\frac {4\lambda _{1}\pi ^{2}}{3\sqrt {3}},\end{equation*}or\begin{equation*}T_{r_{1},r_{2},r_{3}}=T_{\sqrt {\frac {1}{4\lambda _{1}-9}}, \sqrt {\frac {2\lambda _{1}-5}{4\lambda _{1}-9}},\sqrt {\frac {2\lambda _{1}-5}{4\lambda _{1}-9}}}, \,\mathcal {H}_{\lambda _{1},\lambda _{2}}(f)=\frac {(4\lambda _{1}-8)\pi ^{2}}{\sqrt {4\lambda _{1}-9}}.\end{equation*}
For the case of $0\leqslant \lambda _{1}\leqslant \dfrac{5}{2}$ , it is obvious that $\mathcal{H}_{\lambda _{1},\lambda _{2}}(f)\geqslant \dfrac{4\lambda _{1}\pi ^{2}}{3\sqrt{3}}$ and equality holds if and only if $T_{r_{1},r_{2},r_{3}}=T_{\frac{\sqrt{3}}{3},\frac{\sqrt{3}}{3},\frac{\sqrt{3}}{3}}$ . In the second case, if $\dfrac{5}{2}\lt \lambda _{1}\leqslant 3$ , since $\dfrac{4\lambda _{1}\pi ^{2}}{3\sqrt{3}} \leqslant \dfrac{(4\lambda _{1}-8)\pi ^{2}}{\sqrt{4\lambda _{1}-9}}$ , we have that $\mathcal{H}_{\lambda _{1},\lambda _{2}}(f)\geqslant \frac{4\lambda _{1}\pi ^{2}}{3\sqrt{3}}$ and equality holds if and only if $T_{r_{1},r_{2},r_{3}}=T_{\frac{\sqrt{3}}{3},\frac{\sqrt{3}}{3},\frac{\sqrt{3}}{3}}$ . If $\lambda _{1}\gt 3$ , $\dfrac{4\lambda _{1}\pi ^{2}}{3\sqrt{3}} \gt \dfrac{(4\lambda _{1}-8)\pi ^{2}}{\sqrt{4\lambda _{1}-9}}$ , and hence $\mathcal{H}_{\lambda _{1},\lambda _{2}}(f)\geqslant \frac{(4\lambda _{1}-8)\pi ^{2}}{\sqrt{4\lambda _{1}-9}}$ , the equality holds if and only if $T_{r_{1},r_{2},r_{3}}=T_{\sqrt{\frac{1}{4\lambda _{1}-9}}, \sqrt{\frac{2\lambda _{1}-5}{4\lambda _{1}-9}},\sqrt{\frac{2\lambda _{1}-5}{4\lambda _{1}-9}}}$ .
Remark 4.7. For the case of $\lambda _{1}=3$ in the above proof, $T_{\frac{\sqrt{3}}{3},\frac{\sqrt{3}}{3},\frac{\sqrt{3}}{3}} =T_{\sqrt{\frac{1}{4\lambda _{1}-9}}. \sqrt{\frac{2\lambda _{1}-5}{4\lambda _{1}-9}},\sqrt{\frac{2\lambda _{1}-5}{4\lambda _{1}-9}}}$ , This implies that $\mathcal{H}_{\lambda _{1},\lambda _{2}}(f)\geqslant \dfrac{4\lambda _{1}\pi ^{2}}{3\sqrt{3}}$ , and equality holds if and only if $T_{r_{1},r_{2},r_{3}}=T_{\frac{\sqrt{3}}{3},\frac{\sqrt{3}}{3},\frac{\sqrt{3}}{3}}$ .
Remark 4.8. In [Reference Montiel and Urbano14], Montiel and Urbano introduced the conformal invariants $W^{-}(F)$ and $W^{+}(F)$ for compact surfaces in $\mathbb{C}P^{2}$ . In view of the Helfrich functional $\mathcal{H}_{\lambda _{1},\lambda _{2}}(f)$ , we have
-
1. When $\lambda _{1}=2, \lambda _{2}=0$ , $\mathcal{H}_{2,0}(F)=W^{-}(F)=\int _{M}(|H|^{2}+2)\textrm{d} M$ ;
-
2. When $\lambda _{1}=0, \lambda _{2}=6$ , $\mathcal{H}_{0,6}(F)=W^{+}(F)=\int _{M}(|H|^{2}+6C^{2})\textrm{d} M$ ;
-
3. When $\lambda _{1}=1, \,\lambda _{2}=3$ , $\mathcal{H}_{1,3}(F)=W(F)=\int _{M}(|H|^{2}+1+3C^{2})\textrm{d} M$ , that is, the Willmore functional.
Thus, by using the Euler–Lagrange equation of $\mathcal{H}_{\lambda _{1},\lambda _{2}}(F)$ , we have the following corollary.
Corollary 4.9. ([Reference Hu and Li8]) The Euler–Lagrange equation of $W(F)$ is
Corollary 4.10. ([Reference Hu and Li8]) The Euler–Lagrange equation of $W^{-}(F)$ is
Corollary 4.11. The Euler–Lagrange equation of $W^{+}(F)$ is
Let us consider the homogeneous tori $T_{r_{1},r_{2},r_{3}}$ in $\mathbb{C}P^{2}$ , then it follows from Theorems 4.4 and 4.6 that
Corollary 4.12. $T_{r_{1},r_{2},r_{3}}$ is a critical surface for $W(F),\,W^{-}(F)$ , or $W^{+}(F)$ if and only if it is the Cliford torus $T_{\frac{1}{\sqrt{3}},\frac{1}{\sqrt{3}},\frac{1}{\sqrt{3}}}$ .
Corollary 4.13. Considering the homogeneous tori $T_{r_{1},r_{2},r_{3}}$ in $\mathbb{C}P^{2}$ . Then $W^{-}(F)\geqslant \dfrac{8\pi ^{2}}{3\sqrt{3}}$ (see also [Reference Montiel and Urbano14]) and $W^{+}(F)\geqslant 0$ , and the equalities hold if and only if $T_{r_{1},r_{2},r_{3}}$ is the Cliford torus $T_{\frac{1}{\sqrt{3}},\frac{1}{\sqrt{3}},\frac{1}{\sqrt{3}}}$ .