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Abstract
Let f : M →CP2 be an isometric immersion of a compact surface in the complex projective planeCP2. In this paper,
we consider the Helfrich-type functional Hλ1 ,λ2 (f ) = ∫

M
(|H|2 + λ1 + λ2C2)dM, where λ1, λ2 ∈R with λ1 � 0, H and

C are respectively the mean curvature vector and the Kähler function of M in CP2. The critical surfaces of Hλ1 ,λ2 (f )
are called Helfrich surfaces. We compute the first variation of Hλ1 ,λ2 (f ) and classify the homogeneous Helfrich tori
in CP2. Moreover, we study the Helfrich energy of the homogeneous tori and show the lower bound of the Helfrich
energy for such tori.

1. Introduction

Helfrich functional dates back to Helfrich’s seminal work [7], which proposed the functional model of
the elastic lipid bilayer or membrane. Let f : M →R

3 be a smooth immersed surface in R
3, the Helfrich

functional (see [5]) is given by:

Hλ1,λ2 (f ) =
∫

M

[(H − c0)2 − γK]dM + λ

∫
M

dM,

where H denotes the mean curvature vector of surface, K is the Gaussian curvature, dM is the area mea-
sure of the induced metric, γ ∈R is a constant bending rigidity, λ� 0 is the weight factor of the area
functional, and c0 ∈R is a given spontaneous curvature caused by asymmetry between the two layers of
the membrane. The functional with zero spontaneous curvature can be considered as a weighted sum of
the Willmore functional and the area, which represent the bending energy and the surface energy, respec-
tively. The critical surfaces of the first variation of Hλ1,λ2 (f ) are called Helfrich surfaces. In recent years,
many important researches have been developed in the study of the functional in geometry. Examples
include the existence and regularity of solutions for Helfrich immersion from surfaces into R

3(see, for
instance, [3, 5, 6, 13, 16]), the classification ([1, 15]) of Helfrich surfaces in R

3.
It is well know that the Willmore functional is conformal invariant and has been a field of active

research since the work of Willmore [17]. And many of the techniques developed have played important
roles in geomotry. Despite this, the functional for a immersed surface in complex manifolds is relatively
less discussed. As noted in [2], Castro and Urbano proved the Whitney sphere is the only Willmore
Lagrangian surface of genus zero in C

2. Hu and Li [9] considered higher-dimensional case, and they
proved Whitney spheres are Willmore submanifolds of Cn if and only if n = 2 and constructed examples
of Willmore Lagrangian spheres in C

n for all n ≥ 2. Immersions from surfaces into the complex pro-
jective plane CP2 are also considered. In [8], Hu and Li calculate the Euler–Lagrangian equation of the
Willmore functional for an n-dimensional submanifold in an (n + p)-dimensional Riemannian manifold.
As a corollary, the authors have given the Euler–Lagrangian equation of the Willmore functional for an
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immersed surface in complex projective plane CP2. In [14], Montiel and Urbano studied the Willmore
functional for compact surface M in CP2. In this case, the Willmore functional is given by:

W =
∫

M

(|H|2 + 1 + 3C2)dM,

where C denotes the Kähler function of M inCP2. The authors decomposed W into two global conformal
invariants:

W+ =
∫

M

(|H|2 + 6C2)dM, W− =
∫

M

(|H|2 + 2)dM.

They proved that W− � 4πμ− 2
∫ |C|dM, where μ denotes the maximum multiplicity of the immer-

sion. The equality holds if and only if μ= 1 and M is either the complex projective line or totally
geodesic real projective plane, or μ= 2 and M is the Lagrangian Whitney sphere. Moreover, Montiel
and Urbano obtained W− � 8π 2/3

√
3 for all homogeneous tori in CP2 and conjectured that the Clifford

torus attains the minimum of W− among all Lagrangian tori inCP2. In this regard, Ma, Mironov, and Zuo
[11] studied a family of Hamiltonian-minimal Lagrangian tori and proved Montiel–Urbano’s conjecture
is valid. For arbitrary Lagrangian tori, the conjecture remains open.

In this paper, we will focus on the Helfrich functional for surfaces in the complex projective plane
CP2 (with holomorphic sectional curvature 4). Let f : M →CP2 be an isometric immersion of a compact
surface inCP2. For simplicity, we assume that the spontaneous curvature c0 = 0. The Helfrich functional
is defined by:

Hλ1,λ2 (f ) =
∫

M

(|H|2 + λ1 + λ2C
2)dM, (1.1)

where λ1, λ2 ∈R and λ1 � 0. When λ1 = 1, λ2 = 3, the functional reduces to Willmore functioal W.
When λ1 = 0, λ2 = 6, the functional reduces to W+ and when λ1 = 2, λ2 = 0, reduces to W−. We first
give the Euler–Lagrange equation of Helfrich functional Hλ1,λ2 (f ). This can also be derived by Hu–Li’s
result (See [8]).

Let {eA}1≤A≤4 be a local orthonormal frame on CP2 such that when restricts to M, {e1, e2} is a local
orthonormal basis for TM. Then the Kähler function C on M can be given by C = 〈Je1, e2〉. Without loss
of generality, we assume that {eA} satisfy⎧⎨

⎩
Je1 = C e2 + √

1 − C2 e4, Je2 = −C e1 − √
1 − C2 e3,

Je3 = −C e4 + √
1 − C2 e2, Je4 = C e3 − √

1 − C2 e1.
(1.2)

Then, we have

Theorem 1.1. Let f : M →CP2 be an isometric immersion of a compact surface in the complex
projective plane CP2. Then, M is a Helfrich surface if and only if⎧⎪⎪⎨

⎪⎪⎩

⊥H3 + (5 − 2λ1 − (3 − 2λ2)C2 − 2|H|2)H3 +∑

βij

h3
ijh

β

ijH
β − 2λ2

√
1 − C2C,1 = 0,


⊥H4 + (5 − 2λ1 − (3 − 2λ2)C2 − 2|H|2)H4 +∑
βij

h4
ijh

β

ijH
β − 2λ2

√
1 − C2C,2 = 0,

where C denotes the Kähler function of M in CP2, C,i (1 ≤ i ≤ 2) denote the first covariant derivatives
of C, and Hβ (3 ≤ β ≤ 4) are the coefficient of the mean curvature vector H of M.

It follows from the above Euler–Lagrange equation that every minimal surfaces with constant Kähler
angle is Helfrich surface. In particular, the complex curve and Lagrangian minimal surface in CP2 are
Helfrich surfaces.
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We, on the other hand, will focus on the homogeneous tori in CP2. We are going to show the
homogeneous Helfrich tori in CP2 and compute the Helfrich energy for the homogenous tori, thereby
determining the energy minimizers within this class of surfaces.

Theorem 1.2. Let Tr1,r2,r3 be a homogeneous torus in CP2. Then, Tr1,r2,r3 is a Helfrich surface if and
only if

1. When 0 � λ1 � 5
2
, Tr1,r2,r3 = T √

3
3 ,

√
3

3 ,
√

3
3

.

2. When λ1 >
5
2
, Tr1,r2,r3 = T √

3
3 ,

√
3

3 ,
√

3
3

or Tr1,r2,r3 = T√
1

4λ1−9 ,

√
2λ1−5
4λ1−9 ,

√
2λ1−5
4λ1−9

.

Theorem 1.3. Let Tr1,r2,r3 be a homogeneous torus in CP2. Then,

1. When 0 � λ1 � 3,

Hλ1,λ2 (f ) � 4λ1π
2

3
√

3

with equality holding if and only if Tr1,r2,r3 = T √
3

3 ,
√

3
3 ,

√
3

3
.

2. When λ1 > 3,

Hλ1,λ2 (f ) � (4λ1 − 8)π 2

√
4λ1 − 9

with equality holding if and only if Tr1,r2,r3 = T√
1

4λ1−9 ,

√
2λ1−5
4λ1−9 ,

√
2λ1−5
4λ1−9

.

The arrangement of this paper is as follows. In Section 2, we recall the basic theory of surfaces in
CP2. In Section 3, we calculate the Euler–Lagrangian equation of the critical surfaces of Hλ1,λ2 (f ). Then,
in Section 4, we consider the homogeneous tori in CP2 and give the proof of Theorems 1.2 and 1.3.

2. Preliminaries

In this section, we will review the moving frame method for surfaces in CP2 following Chern and
Wolfson (for more details, see [4]). In the paper, we will adopt the following ranges of indices:

0 � a, b, c � 2, 1 � i, j, k � 2, 3 � α, β � 4, 1 � A, B � 4.

Let 〈, 〉 be the hermitian product in C
3, that is,

〈Z, W〉 =
3∑

l=1

ZlWl

for any Z, W ∈C
3, where W denotes the conjugate of W. Let CP2 be the complex projective plane with

its canonical Fubini–Study metric of constant holomorphic sectional curvature 4. Then,

CP2 = {[Z0] =�(Z0)|Z0 = (z1, z2, z3) ∈C
3 − {0}, |Z0| = 1},

where� : S5 →CP2 is the Hopf projection. We denote g by its Fubini–Study metric and J by its complex
structure induced by C

3 on CP2. Then,

g = 〈dZ0, dZ0〉 − 〈dZ0, Z0〉〈Z0, dZ0〉. (2.1)

The Kähler form � on CP2 is defined by:

�(u, v) = g(Ju, v), for any u, v ∈ 	(T(CP2)). (2.2)
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Let {Z0, Z1, Z2} be a unitary frames in C
3. Then, we have

〈Za, Zb〉 = δab, dZa =
∑

b

ψabZb, (2.3)

where ψab =ψab is connection 1-form and satisfies structure equation:

dψab =
∑

c

ψac ∧ψcb. (2.4)

Moreover, the Fubini–Study metric (2.1) can be written as:

g =
∑

i

ψ0iψ0i. (2.5)

On the other hand, let {ςi} be a unitary frames in CP2 with dual frames {ωi}, the structure equation of
CP2 can be written as:

dωi =
∑

j

ωij ∧ωj, ωij +ωji = 0, ωji =ωji, (2.6)

with {ωij} being the unitary connection forms with respect to {ωi}. We have then

g =
∑

i

ωiωi =
∑

i

ωiωi. (2.7)

Combining with (2.5) and (2.7) and (2.4) and (2.6), we get
ωi =ψ0i, (2.8)

ωij = δijψ00 −ψji. (2.9)

Let f : M →CP2 be an isometric immersion of a compact surface M in the complex projective plane
CP2. The Kähler function C on M is defined by:

f ∗�= CdM, (2.10)

where dM is the area form on M. The surface f is holomorphic, anti-holomorphic, or Lagrangian, respec-
tively, depending on C ≡ 1, −1, or 0. Now, we consider M ⊂CP2 first from the Riemannian geometry
version and then from the complex version due to Chern and Wolfson [4].

Let us choose a (new) local orthonormal frame {eA} of CP2 with its dual {θA} such that restricting to
M, {ei} is a local orthonormal basis of TM. Then, we have restricted to M

θα = 0, θiα =
∑

j

hijθj.

The second fundamental form II and the mean curvature vector H are defined by:

II =
∑
αij

hαijθi ⊗ θj ⊗ eα, H = 1

2

∑
αi

hαiieα =
∑
α

Hαeα.

Let ∇ be the Riemannian connection of CP2, and let ∇ and ∇⊥ be the induced connection and normal
connection of M, respectively. The covariant derivative and Laplacian of H on the normal bundle of M
are, respectively, defined as: ∑

i

Hα

,i θi = dHα +
∑
β

Hβθβα,

∑
j

Hα

,ijθj = dHα

,i +
∑

j

Hα

,j θji +
∑
β

Hβ

,i θβα,


⊥Hα =
∑

i

Hα

,ii.
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Let RABCD be the Riemannian curvature tensor of CP2, we have then

RABCD = g(eA, eC)g(eB, eD) − g(eA, eD)g(eB, eC) + g(JeA, eC)g(JeB, eD)

− g(JeA, eD)g(JeB, eC) + 2g(JeA, eB)g(JeC, eD).
(2.11)

Now, let us recall the complex version of the geometry of M which is due to Chern and Wolfson [4].
Set φ = θ1 + iθ2. It defines a complex structure on M. The induced metric on M is of the form:

f ∗g =
∑

i

ωiωi = φφ. (2.12)

Then after a normalization of {ςi} if necessary ([4, p. 66]), we can assume that there exist complex-valued
smooth functions s, t which satisfy |s|2 + |t|2 = 1 such that

ω1 = sφ, ω2 = tφ. (2.13)

In particular, setting |s| = cos
α

2
, |t| = sin

α

2
, one has then C = cos α with 0 ≤ α ≤ π . Now we have,

along M,

sω1 + tω2 = φ, (2.14)

tω1 − sω2 = θ3 + iθ4 = 0. (2.15)

Taking exterior derivative of the first term of (2.15), we get

((sdt − tds) + st(ω11 +ω22)) ∧ φ +ω12 ∧ φ = 0. (2.16)

Set

(sdt − tds) + st(ω11 +ω22) = aφ + bφ, (2.17)

ω12 = bφ + cφ, (2.18)

then the complex-valued second fundamental forms can be given by:

IIC = aφ2 + 2bφφ + cφ
2
. (2.19)

Lemma 2.1. The coefficients a, b, c of the complex-valued second fundamental forms IIC satisfy

Re(a + c) + Re(2b) = h3
11, Im(c − a) = h3

12, Re(2b) − Re(a + c) = h3
22,

Im(a + c) + Im(2b) = h4
11, Re(a − c) = h4

12, Im(2b) − Im(a + c) = h4
22,

(2.20)

where Re and Im denote, respectively, the real and imaginary parts.

Proof. Taking exterior derivative of the second term of (2.15), we get

d(θ3 + iθ4)

= − 1

2

(
h3

11 − h3
22 + 2h4

12 + i(h4
11 − h4

22 − 2h3
12)

4
φ + h3

11 + h3
22 + i(h4

11 + h4
22)

4
φ

)
∧ φ

− 1

2

(
h3

11 + h3
22 + i(h4

11 + h4
22)

4
φ + h3

11 − h3
22 − 2h4

12 + i(h4
11 − h4

22 + 2h3
12)

4
φ

)
∧ φ.
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Then from (2.15), (2.16), (2.17), and (2.18), we have that

a = h3
11 − h3

22 + 2h4
12 + i(h4

11 − h4
22 − 2h3

12)

4
,

b = h3
11 + h3

22 + i(h4
11 + h4

22)

4
,

c = h3
11 − h3

22 − 2h4
12 + i(h4

11 − h4
22 + 2h3

12)

4
,

and (2.20) follows.

Remark 2.2. Note that we can re-choose the unitary coframe {ω1,ω2} such that

s = cos
α

2
, t = sin

α

2
. (2.21)

The Kähler angle α is smooth at the points with 0<α <π . At the points α = 0 or π , α could be only
continuous. Moreover, under the assumption of (2.21), we can obtain by (2.13) that⎧⎪⎨

⎪⎩
ω1 = cos

α

2
θ1 + sin

α

2
θ3 + i

(
cos

α

2
θ2 + sin

α

2
θ4

)
,

ω2 = sin
α

2
θ1 − cos

α

2
θ3 + i

(
−sin

α

2
θ2 + cos

α

2
θ4

)
,

and hence ⎧⎪⎪⎨
⎪⎪⎩
ς1 = 1

2

(
cos

α

2
e1 + sin

α

2
e3 − i

(
cos

α

2
e2 + sin

α

2
e4

))
,

ς2 = 1

2

(
sin

α

2
e1 − cos

α

2
e3 − i

(
−sin

α

2
e2 + cos

α

2
e4

))
.

So, we have

J
(
cos

α

2
e1 + sin

α

2
e3

)
= cos

α

2
e2 + sin

α

2
e4, J

(
sin

α

2
e1 − cos

α

2
e3

)
= − sin

α

2
e2 + cos

α

2
e4,

from which we get ⎧⎨
⎩

Je1 = Ce2 + √
1 − C2e4, Je2 = −Ce1 − √

1 − C2e3,

Je3 = −Ce4 + √
1 − C2e2, Je4 = Ce3 − √

1 − C2e1.

This is exactly we assume in (1.2) of Section 1.

3. Euler–Lagrange equation of Helfrich functional

Let f (p, t) : M × (−ε, ε) →CP2 be a variation of M with f0(p) = f (p). Here, we denote by ft(p) =
f (p, t) : M →CP2 for t ∈ (−ε, ε). Let {x1, x2, t} be a local coordinate system around the point (p, 0) such

that {df

(
∂

∂x1

)
, df

(
∂

∂x2

)
}|p is an orthonormal basis of TpM. Set V̄ = dft

(
∂

∂t

)
, Xi = dft

(
∂

∂xi

)
. Then, we

have the induced metric of ft and its area form as follows:

(gt)ij = gt(Xi, Xj), dMt =
√

Gtdx1 ∧ dx2 with Gt = det(gt).

Then (g0)ij(p) = gij(p)δij. Set ẽi = dft|t=0

(
∂

∂xi

)
and V = dft|t=0

(
∂

∂t

)
= V� + V⊥ with V� ∈ 	(TM) and

V⊥ ∈ 	(T⊥M).
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We first consider
∂(

√
Gt)

∂t
|t=0 and

∂|H|2

∂t
|t=0. It is well known that

∂(
√

Gt)

∂t
|t=0 = (divV� − 2〈H, V〉)√Gt. (3.1)

Now we consider
∂|H|2

∂t
|t=0. It follows the definition of the mean curvature vector that

2Ht =
∑

ij

gij
t h(Xi, Xj),

where ((gt)ij) denotes the inverse matrix of ((gt)ij). Thus, we have at the point p that

∂

∂t
(2Ht)|t=0 =

∑
ij

(
∂(gt)ij

∂t
|t=0h(ẽi, ẽj) + δij

∂h(Xi, Xj)

∂t
|t=0

)
. (3.2)

Differentiating the formula
∑

j

gijgjk = δik and using the fact that
[
∂

∂t
,
∂

∂xi

]
= 0, we get

∂(gt)ij

∂t
|t=0 = −∂(gt)ij

∂t
|t=0 = −∇Vg(ẽi, ẽj)

= −∇V�g(ẽi, ẽj) + (∇ ẽi V
⊥, ẽj) + (ẽi, ∇ ẽj V

⊥))

= −∇V�g(ẽi, ẽj) + 2g(h(ẽi, ẽj), V⊥).

(3.3)

Also, we have

δij

∂h(Xi, Xj)

∂t
|t=0 = ∇V(∇ ẽi ẽi − ∇ẽi ẽi)

= ∇V�∇ ẽi ẽi − ∇V�∇ẽi ẽi

+ ∇ ẽi∇ ẽi V
⊥ + R(V⊥, ẽi)ẽi − ∇V⊥∇ẽi ẽi.

(3.4)

Since
∂|H|2

∂t
= g

(
H, 2

∂H

∂t

)
, we only need to know the normal part of (3.4). So, by a direct computation

we have
(∑

i

(∇V�∇ ẽi ẽi − ∇V�∇ẽi ẽi)

)⊥

=
(∑

i

∇V�h(ẽi, ẽi)

)⊥

= 2∇⊥
V�H, (3.5)

(∑
i

(∇ ẽi∇ ẽi V
⊥ + R(V⊥, ẽi)ẽi − ∇V⊥∇ẽi ẽi)

)⊥

=
∑

i

(−h(ẽi, AV⊥ (ẽi)) + ∇⊥
ẽi
∇⊥

ẽi
V⊥ + (R(V⊥, ẽi)ẽi)

⊥ − ∇⊥
∇ẽi

ẽi
V⊥)

= 
⊥V⊥ +
∑

i

(−g(h(ẽi, ẽj), V⊥)h(ẽi, ẽj) + (R(V⊥, ẽi)ẽi)
⊥).

(3.6)
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Here, we used the fact that (∇V⊥∇ẽi ẽi)⊥ = ∇⊥
∇ẽi

ẽi
V⊥. Finally, substituting (3.3) and (3.4) into (3.2) and

using (3.5), (3.6), and (2.11), we obtain at the point p that

∂|H|2

∂t
|t=0 = g

(
H, 2

∂H

∂t

)

=
∑
α

(
Hα
⊥Vα + Vα(5 − 3C2)Hα +

∑
ijβ

VαHβhαijh
β

ij

−
∑

ijk

HαhαijV
k∇ẽk gij

)
+
∑

i

Vi∇ẽi |H|2.

=
∑
α

(
Hα
⊥Vα + Vα(5 − 3C2)Hα +

∑
ijβ

VαHβhαijh
β

ij

)
+
∑

i

Vi∇ẽi |H|2. (3.7)

Here, we used∑
ijk

VkHαhαij∇ẽk gij =
∑

ik

(−Vk∇ẽk (H
αhαii) − HαhαiidivV� + div(HαhαiiV

�)) = 0.

Next, we consider
∂(Ct)2

∂t
|t=0. First for an oriented orthonormal basis {e1, e2} of TM, set

XV =�(V , e2)e1 +�(e1, V)e2.

It is direct to check that XV is independent of the choice {e1, e2}, and hence it defines a smooth vector
field on M with

divXV = ∇e1�(V , e2) + ∇e2�(e1, V). (3.8)

The definition of the Kähler function means that

Ct = �(X1, X2)√
Gt

.

So we get, at the point p,

∂(Ct)

∂t
|t=0 = ∂�(X1, X2)

∂t
|t=0 − C

∂(
√

Gt)

∂t
|t=0. (3.9)

Since [ẽ1, ẽ2]|p = 0 and [V , ẽi]|p = 0 for 1 ≤ i ≤ 2, we have at the point p that

∂�(X1, X2)

∂t
|t=0 =�(∇ ẽ1 V , ẽ2) +�(ẽ1, ∇ ẽ2 V)

= ∇ ẽ1�(V , ẽ2) −�(V , ∇ ẽ1 ẽ2) + ∇ ẽ2�(ẽ1, V) −�(∇ ẽ2 ẽ1, V)

= ∇ẽ1�(V , ẽ2) + ∇ẽ2�(ẽ1, V) = div(XV).

(3.10)

Substituting (3.1) and (3.10) into (3.9), we obtain at the point p that

∂C2

∂t
|t=0 =

(
2C divXV − 2C2(divV� − 2〈H, V〉)

)
. (3.11)
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Noting that the right sides of (3.7) and (3.11) are independent of the coordinates and hence valid at any
point of M. Thus, from (3.1), (3.7), and (3.11), we get

d

dt
|t=0(Hλ1,λ2 (f )) =

∫
M

∂

∂t
(|H|2 + λ1 + λ2C

2)|t=0dM +
∫

M

(|H|2 + λ1 + λ2C
2)
∂(dM)

∂t
|t=0

=
∫

M

(∑
α

(
Hα
⊥Vα + [(5 − 2λ1 − (3 − 2λ2)C2 − 2|H|2)Hα +

∑
βij

hαijh
β

ijH
β]Vα

)

+
∑

i

Vi∇ẽi |H|2 + 2λ2C divXV + (λ1 + λ2C
2 + |H|2)divV�

)
dM.

(3.12)
Furthermore, it follows from the divergence theorem that∫

M

Hα
⊥VαdM =
∫

M

Vα
⊥HαdM. (3.13)

∫
M

∑
i

Vi∇ẽi |H|2dM = −
∫

M

|H|2div(V�)dM. (3.14)

∫
M

2C divXV = −2
∫

M

〈∇C, XV〉dM = −2
∫

M

(
∇e1 C ·�(V , e2) + ∇e2 C ·�(e1, V)

)
dM. (3.15)

∫
M

C2divV�dM = −2
∫

M

(
∇e1 C ·�(V�, e2) + ∇e2 C ·�(e1, V�)

)
dM. (3.16)

Substituting (3.13)–(3.16) into (3.12) and noting

∇e1 C ·�(V⊥, e2) + ∇e2 C ·�(e1, V⊥) = −∇e1 C · 〈Je2, V⊥〉 + ∇e2 C · 〈Je1, V⊥〉
= √

1 − C2〈(∇e1 C e3 + ∇e2 C e4), V〉, (3.17)

we obtain that
d

dt
|t=0(Hλ1,λ2 (f )) =

∫
M

(∑
α

Vα[
⊥Hα + (5 − 2λ1 − (3 − 2λ2)C
2 − 2|H|2)Hα

+
∑
βij

hαijh
β

ijH
β] − 2λ2

√
1 − C2(C,1V

3 + C,2V4)

)
dM,

where C,i (1 ≤ i ≤ 2) denote the first covariant derivatives of C. This implies that the Euler–Lagrange
equation of Hλ1,λ2 (f ) is⎧⎪⎪⎨

⎪⎪⎩

⊥H3 + (5 − 2λ1 − (3 − 2λ2)C2 − 2|H|2)H3 +∑

βij

Hβhβijh
3
ij − 2λ2

√
1 − C2C,1 = 0,


⊥H4 + (5 − 2λ1 − (3 − 2λ2)C2 − 2|H|2)H4 +∑
βij

Hβhβijh
4
ij − 2λ2

√
1 − C2C,2 = 0.

(3.18)

This gives the proof of Theorem 1.1.

Remark 3.1. When λ2 = 0, the function reduces to Hλ1,λ2 (f ) = ∫
M

(|H|2 + λ1)dM. In this situation, if M
is minimal, we obtain from (3.18) that M is Helfrich surface.

Remark 3.2. When C = constant, that is, M has constant Kähler angle. If M is minimal, then M is
Helfrich surface.

Combing this we have
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Corollary 3.3. The complex curves and Lagrangian minimal surfaces in complex projective plane CP2

are Helfrich surfaces.

Corollary 3.4. Let f : M →CP2 be an isometric immersion of a compact surface in CP2. If M is a
Helfrich surface for any λ1, λ2. Then M is minimal.

4. Homogeneous tori in CP2

In this section, we consider the homogeneous tori in CP2.

4.1. The geometry of homogeneous tori

The definition of the homogeneous torus in CP2 is given by the image of the Hopf projection:

Tr1,r2,r3 = {�(Z0) ∈CP2|Z0 = (z1, z2, z3), |zl| = rl, l = 1, 2, 3},
for positive numbers r1, r2, r3 that satisfy r2

1 + r2
2 + r2

3 = 1. In this case, we also call T √
3

3 ,
√

3
3 ,

√
3

3
the Clifford

torus. We note that Ma, Mironov, and Zuo in [11] gave a basis of the period module for the homogeneous
tori. Here, we discuss the conformal structure of the homogeneous tori for completeness.

Taking into account the definition of Tr1,r2,r3 , we assume that the homogeneous coordinate of
Tr1,r2,r3 is

Z0 = (r1, r2e
iϕ , r3e

iψ ), i.e., dZ0 = (0, ir2e
iϕ , ir3e

iψ ),

where ϕ, ψ ∈R. Then we have from (2.1) that

Lemma 4.1. The induced metric of Tr1,r2,r3 in CP2 is

g = r2
2r2

3

(
1 − r2

2

r2
3

dϕ2 + 1 − r2
3

r2
2

dψ 2 − 2dϕdψ
)

. (4.1)

Setting ⎧⎪⎪⎨
⎪⎪⎩

u =
√

1−r2
2

r3
ϕ − r3√

1−r2
2

ψ ,

v = r1

r2

√
1−r2

2

ψ ,
i.e.

⎧⎪⎨
⎪⎩
ϕ = r3√

1−r2
2

u + r2
2r3

r1

√
1−r2

2

v,

ψ = r2

√
1−r2

2

r1
ψ .

(4.2)

Then

g = r2
2r2

3(du2 + dv2) = r2
2r2

3|dz|2,

and hence z = u + iv gives a complex coordinate of Tr1,r2,r3 . Also, from (4.2) we get a basis (ω1,ω2) of
the period module for Tr1,r2,r3 with

ω1 = 2π
√

1 − r2
2

r3

, ω2 = 2πr2
1

r3

√
1 − r2

2

+ i
2πr1

r2

√
1 − r2

2

.

So without loss of generality, we assume r3 � r1 � r2, k = r3
r1

, then

τ = ω2

ω1

= 1

k2 + 1
+ i

k

r2(k2 + 1)
, with {τ |0<Re τ � 1

2
, |τ |� 1}

gives the module space for Tr1,r2,r3 (see the shaded part of Figure 1).

In particular, for Clifford torus T √
3

3 ,
√

3
3 ,

√
3

3
, τ = 1

2
+ i

√
3

2
.

Now, we are going to consider the second fundamental forms of Tr1,r2,r3 in CP2.
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Figure 1. τ -plane.

Lemma 4.2. The second fundamental forms of Tr1,r2,r3 satisfy
(

h3
11 h3

12

h3
21 h3

22

)
=
⎛
⎜⎝

0 −r2√
1−r2

2

−r2√
1−r2

2

r2
1−r2

3

r1r3

√
1−r2

2

⎞
⎟⎠ , (4.3)

(
h4

11 h4
12

h4
21 h4

22

)
=
⎛
⎜⎝

2r2
2−1

r2

√
1−r2

2

0

0 r2√
1−r2

2

⎞
⎟⎠ . (4.4)

Proof. Set φ = r2r3(du + idv), then the induced metric of Tr1,r2,r3 can be written as:

g = φ · φ̄.

Let {Z0, Z1, Z2} be a unitary frames in C
3. Then dZ0 =∑

a

ψ0aZa with ψab =ψab. From this, we get

ψ01Z1 +ψ02Z2 = dZ0 −ψ00Z0

= dZ0 − h(dZ0, Z0)Z0

=
(

−r3 − ir1r2

2
√

1 − r2
2

,
i
√

1 − r2
2eiϕ

2
,

(r1 − ir2r3)eiψ

2
√

1 − r2
2

)
φ

+
(

r3 − ir1r2

2
√

1 − r2
2

,
i
√

1 − r2
2eiϕ

2
,

(−r1 − ir2r3)eiψ

2
√

1 − r2
2

)
φ. (4.5)

And hence we obtain from |Z1| = |Z2| = 1 that

Z1 =
(

−r3 − ir1r2√
2(1 − r2

2)
,

i
√

1 − r2
2eiϕ

√
2

,
(r1 − ir2r3)eiψ√

2(1 − r2
2)

)
,

Z2 =
(

r3 − ir1r2√
2(1 − r2

2)
,

i
√

1 − r2
2eiϕ

√
2

,
(−r1 − ir2r3)eiψ√

2(1 − r2
2)

)
.

(4.6)

Let {ωi} be an unitary coframe in CP2 such that restricting to M

ω1 = sφ, ω2 = tφ. (4.7)
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Then from (2.8) and (4.5), we have

s = t =
√

2

2
. (4.8)

Now, using the fact ψab = 〈dZa, Zb〉, then from (2.9) we get

ω11 =ψ00 −ψ11 = (3r2
2 − 1)i

2
dϕ + (3r2

3 − 1)i

2
dψ ,

ω22 =ψ00 −ψ22 = (3r2
2 − 1)i

2
dϕ + (3r2

3 − 1)i

2
dψ ,

ω12 = −ψ21 = − (1 − r2
2)i

2
dϕ − 2r1r2r2r3 + i(r2

2r2
3 − r2

0)

2(1 − r2
2)

dψ ,

and so

st(ω11 +ω22) =
(

2r2
3 + r2

2 − 1

4r1r3

√
(1 − r2

2)
+ i(3r2

2 − 1)

4r2

√
1 − r2

2

)
φ

+
(

−(2r2
3 + r2

2 − 1)

4r1r3

√
(1 − r2

2)
+ i(3r2

2 − 1)

4r2

√
1 − r2

2

)
φ,

ω12 =
(

−(2r2
3 + r2

2 − 1)

4r1r3

√
(1 − r2

2)
+ i(3r2

2 − 1)

4r2

√
1 − r2

2

)
φ

+
(

2r2
3 + r2

2 − 1

4r1r3

√
(1 − r2

2)
− i(r2

2 + 1)

4r2

√
1 − r2

2

)
φ.

Thus, we obtain from (2.17) and (2.18) that the coefficients of the complex-valued second fundamental
forms (see (2.19)) of Tr1,r2,r3 are ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a = r2
3 − r2

1

4r1r3

√
1 − r2

2

+ i(3r2
2 − 1)

4r2

√
1 − r2

2

,

b = r2
1 − r2

3

4r1r3

√
1 − r2

2

+ i(3r2
2 − 1)

4r2

√
1 − r2

2

,

c = r2
3 − r2

1

4r1r3

√
1 − r2

2

− i(r2
2 + 1)

4r2

√
1 − r2

2

.

(4.9)

Using Lemma 2.1, (4.3) and (4.4) follow directly.

Remark 4.3. The above proof shows that s = t =
√

2

2
, that is, cos α=

√
2

2
and the Kähler function

C = cos α= 0, which also implies that the homogeneous torus in CP2 is Lagrangian.

Now we discuss the classification the homogeneous Helfrich tori in CP2.

Theorem 4.4. Tr1,r2,r3 is a Helfrich surface if and only if

1. When 0 � λ1 �
5

2
, Tr1,r2,r3 = T √

3
3 ,

√
3

3 ,
√

3
3

.

2. When λ1 >
5

2
, Tr1,r2,r3 = T √

3
3 ,

√
3

3 ,
√

3
3

or Tr1,r2,r3 = T√
1

4λ1−9 ,

√
2λ1−5
4λ1−9 ,

√
2λ1−5
4λ1−9

.
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Proof. By Lemma 4.2, we get the coefficients of the mean curvature of Tr1,r2,r3 as follows:

H3 = r2
1 − r2

3

2r1r3

√
1 − r2

2

, H4 = (3r2
2 − 1)

2r2

√
1 − r2

2

. (4.10)

And hence the norm square of the mean curvature is

|H|2 = (1 − r2
1)(1 − r2

2)(1 − r2
3)

4r2
1r2

2r2
3

− 2. (4.11)

Thus, substituting (4.10) and (4.11) into the Euler–Lagrange equation (3.18) and using the fact C =
cos α ≡ 0, we get that⎧⎪⎪⎪⎨
⎪⎪⎪⎩

{(
12 − 4λ1 + (4λ1 − 8)r2

2

)
r2

1r2
2r2

3 + 2r2
2(r4

1 + r4
3) − (1 − r2

1)(1 − r2
2)2(1 − r2

3)
}

(r2
1 − r2

3) = 0,{(
10 − 4λ1 + (4λ1 − 8)r2

2

)
r2

1r2
2r2

3 + 2r2
1r2

3 − (1 − r2
1)(1 − r2

2)2(1 − r2
3)
}

(3r2
2 − 1) + 2r4

2(r2
1 − r2

3) = 0,

r2
1 + r2

2 + r2
3 = 1.

By solving the equation above, we obtain

1. When 0 � λ1 �
5

2
, Tr1,r2,r3 = T √

3
3 ,

√
3

3 ,
√

3
3

.

2. When λ1 >
5

2
, Tr1,r2,r3 = T √

3
3 ,

√
3

3 ,
√

3
3

or Tr1,r2,r3 = T√
1

4λ1−9 ,

√
2λ1−5
4λ1−9 ,

√
2λ1−5
4λ1−9

.

4.2. The Helfrich energy of homogeneous tori

Proposition 4.5. The Helfrich energy of Tr1,r2,r3 is

Hλ1,λ2 (f ) =
∫

M

(|H|2 + λ1 + λ2C
2)dM

= ((1 − r2
1)(1 − r2

2)(1 − r2
3) + (4λ1 − 8)r2

1r2
2r2

3)π 2

r1r2r3

.

(4.12)

Proof. From Lemma 4.1, we have dTr1,r2,r3 = r1r2r3dϕdψ . By using of (4.11), (4.12) follows
directly.

Now we consider the lower bound of Hλ1,λ2 (f ) for Tr1,r2,r3 .

Theorem 4.6. The Helfrich energy of Tr1,r2,r3 satisfies

1. When 0 � λ1 � 3,

Hλ1,λ2 (f ) � 4λ1π
2

3
√

3
,

and the equality holds if and only if r1 = r2 = r3 =
√

3

3
.

2. When λ1 > 3,

Hλ1,λ2 (f ) � (4λ1 − 8)π 2

√
4λ1 − 9

,

and the equality holds if and only if r1 =
√

1

4λ1 − 9
, r2 = r3 =

√
2λ1 − 5

4λ1 − 9
.
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Proof. Computing the extreme value of (4.12) under the constraint r2
1 + r2

2 + r2
3 = 1 yields⎧⎪⎪⎪⎨

⎪⎪⎪⎩
(4λ1 − 8)(r2

1 − r2
2)r2

1r2
2r2

3 + (1 + r2
1)(1 − r2

2)(1 − r2
3)r2

2 − (1 − r2
1)(1 + r2

2)(1 − r2
3)r2

1 = 0,

(4λ1 − 8)(r2
1 − r2

3)r2
1r2

2r2
3 + (1 + r2

1)(1 − r2
2)(1 − r2

3)r2
3 − (1 − r2

1)(1 − r2
2)(1 + r2

3)r2
1 = 0,

r2
1 + r2

2 + r2
3 = 1.

A straightforward calculation shows that

1. When 0 � λ1 �
5

2
,

Tr1,r2,r3 = T √
3

3 ,
√

3
3 ,

√
3

3
, Hλ1,λ2 (f ) = 4λ1π

2

3
√

3
.

2. When λ1 >
5

2
,

Tr1,r2,r3 = T √
3

3 ,
√

3
3 ,

√
3

3
, Hλ1,λ2 (f ) = 4λ1π

2

3
√

3
,

or

Tr1,r2,r3 = T√
1

4λ1−9 ,

√
2λ1−5
4λ1−9 ,

√
2λ1−5
4λ1−9

, Hλ1,λ2 (f ) = (4λ1 − 8)π 2

√
4λ1 − 9

.

For the case of 0 � λ1 �
5

2
, it is obvious that Hλ1,λ2 (f ) � 4λ1π

2

3
√

3
and equality holds if and only

if Tr1,r2,r3 = T √
3

3 ,
√

3
3 ,

√
3

3
. In the second case, if

5

2
<λ1 � 3, since

4λ1π
2

3
√

3
� (4λ1 − 8)π 2

√
4λ1 − 9

, we have that

Hλ1,λ2 (f ) � 4λ1π
2

3
√

3
and equality holds if and only if Tr1,r2,r3 = T √

3
3 ,

√
3

3 ,
√

3
3

. If λ1 > 3,
4λ1π

2

3
√

3
>

(4λ1 − 8)π 2

√
4λ1 − 9

,

and hence Hλ1,λ2 (f ) � (4λ1−8)π2
√

4λ1−9
, the equality holds if and only if Tr1,r2,r3 = T√

1
4λ1−9 ,

√
2λ1−5
4λ1−9 ,

√
2λ1−5
4λ1−9

.

Remark 4.7. For the case of λ1 = 3 in the above proof, T √
3

3 ,
√

3
3 ,

√
3

3
= T√

1
4λ1−9 .

√
2λ1−5
4λ1−9 ,

√
2λ1−5
4λ1−9

, This implies

that Hλ1,λ2 (f ) � 4λ1π
2

3
√

3
, and equality holds if and only if Tr1,r2,r3 = T √

3
3 ,

√
3

3 ,
√

3
3

.

Remark 4.8. In [14], Montiel and Urbano introduced the conformal invariants W−(F) and W+(F) for
compact surfaces in CP2. In view of the Helfrich functional Hλ1,λ2 (f ), we have

1. When λ1 = 2, λ2 = 0, H2,0(F) = W−(F) = ∫
M

(|H|2 + 2)dM;
2. When λ1 = 0, λ2 = 6, H0,6(F) = W+(F) = ∫

M
(|H|2 + 6C2)dM;

3. When λ1 = 1, λ2 = 3, H1,3(F) = W(F) = ∫
M

(|H|2 + 1 + 3C2)dM, that is, the Willmore func-
tional.

Thus, by using the Euler–Lagrange equation of Hλ1,λ2 (F), we have the following corollary.

Corollary 4.9. ([8]) The Euler–Lagrange equation of W(F) is⎧⎪⎪⎨
⎪⎪⎩


⊥H3 + (3 + 3C2 − 2|H|2)H3 +∑
β,i,j

h3
ijh

β

ijH
β − 6

√
1 − C2C,1 = 0,


⊥H4 + (3 + 3C2 − 2|H|2)H4 +∑
β,i,j

h4
ijh

β

ijH
β − 6

√
1 − C2C,2 = 0.
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Corollary 4.10. ([8]) The Euler–Lagrange equation of W−(F) is


⊥Hα + (1 − 3C2 − 2|H|2)Hα +
∑
β,i,j

hαijh
β

ijH
β = 0.

Corollary 4.11. The Euler–Lagrange equation of W+(F) is⎧⎪⎪⎨
⎪⎪⎩


⊥H3 + (5 + 9C2 − 2|H|2)H3 +∑
β,i,j

h3
ijh

β

ijH
β − 12

√
1 − C2C,1 = 0,


⊥H4 + (3 + 3C2 − 2|H|2)H4 +∑
β,i,j

h4
ijh

β

ijH
β − 12

√
1 − C2C,2 = 0.

Let us consider the homogeneous tori Tr1,r2,r3 in CP2, then it follows from Theorems 4.4 and 4.6 that

Corollary 4.12. Tr1,r2,r3 is a critical surface for W(F), W−(F), or W+(F) if and only if it is the Cliford
torus T 1√

3
, 1√

3
, 1√

3
.

Corollary 4.13. Considering the homogeneous tori Tr1,r2,r3 in CP2. Then W−(F) � 8π 2

3
√

3
(see also [14])

and W+(F) � 0, and the equalities hold if and only if Tr1,r2,r3 is the Cliford torus T 1√
3

, 1√
3

, 1√
3
.
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