We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save this undefined to your undefined account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your undefined account.
Find out more about saving content to .
To send this article to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We find upper bounds on the essential dimension of the moduli stack of parabolic vector bundles over a curve. When there is no parabolic structure, we improve the known upper bound on the essential dimension of the usual moduli stack. Our calculations also give lower bounds on the essential dimension of the semistable locus inside the moduli stack of vector bundles of rank r and degree d without parabolic structure.
Multirings are objects like rings but with multi-valued addition. In the present paper we extend results of E. Becker and others concerning orderings of higher level on fields and rings to orderings of higher level on hyperfields and multirings and, in the process of doing this, we establish higher level analogs of the results previously obtained by the second author. In particular, we introduce a class of multirings called ℓ-real reduced multirings, define a natural reflection A ⇝ Qℓ-red(A) from the category of multirings satisfying to the full subcategory of ℓ-real reduced multirings, and provide an elementary first-order description of these objects. The relationship between ℓ-real reduced hyperfields and the spaces of signatures defined by Mulcahy and Powers is also examined.
This article presents results which are consistent with conjectures about Leibniz (co)homology for discrete groups, due to J. L. Loday in 2003. We prove that rack cohomology has properties very close to the properties expected for the conjectural Leibniz cohomology. In particular, we prove the existence of a graded dendriform algebra structure on rack cohomology, and we construct a graded associative algebra morphism H•(−) → HR•(−) from group cohomology to rack cohomology which is injective for ● = 1.
For a field k of cohomological dimension d we prove that the groups , (l, car.k) = 1, are birational invariants of smooth projective geometrically integral varieties over k of dimension n. Using the Kato conjecture, which has been recently established by Kerz and Saito [18], we obtain a similar result over a finite field for the groups . We relate one of these invariants with the cokernel of the l-adic cycle class map , which gives an analogue of a result of Colliot-Thélène and Voisin [5] 3.11 over ℂ for varieties over a finite field.
Explicit generators are found for the group G2 of automorphisms of the algebra of one-sided inverses of a polynomial algebra in two variables over a field. Moreover, it is proved that
where S2 is the symmetric group, is the 2-dimensional algebraic torus, E∞() is the subgroup of GL∞() generated by the elementary matrices. In the proof, we use and prove several results on the index of an operator. The final argument is the proof of the fact that K1() ≃ K*. The algebras and are noncommutative, non-Noetherian, and not domains.