Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-15T21:18:16.011Z Has data issue: false hasContentIssue false

Habit formation generates secondary modules that emulate the efficiency of evolved behavior

Published online by Cambridge University Press:  15 August 2017

Samuel A. Nordli
Affiliation:
Department of Psychological and Brain Sciences and the Cognitive Science Program, Indiana University, Bloomington, IN [email protected]@indiana.eduhttp://www.indiana.edu/~abcwest/
Peter M. Todd
Affiliation:
Department of Psychological and Brain Sciences and the Cognitive Science Program, Indiana University, Bloomington, IN [email protected]@indiana.eduhttp://www.indiana.edu/~abcwest/

Abstract

We discuss the evolutionary implications of connections drawn between the authors' learned “secondary modules” and the habit-formation system that appears to be ubiquitous among vertebrates. Prior to any subsequent coevolution with social learning, we suggest that aspects of general intelligence likely arose in tandem with mechanisms of adaptive motor control that rely on basal ganglia circuitry.

Type
Open Peer Commentary
Copyright
Copyright © Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aldridge, J. W., Berridge, K. C. & Rosen, A. R. (2004) Basal ganglia neural mechanisms of natural movement sequences. Canadian Journal of Physiology and Pharmacology 82:732–39. doi: 10.1139/Y04-061.CrossRefGoogle ScholarPubMed
Barnes, T. D., Kubota, Y., Hu, D., Jin, D. Z. & Graybiel, A. M. (2005) Activity of striatal neurons reflects dynamic encoding and recoding of procedural memories. Nature 437:1158–61. doi: 10.1038/nature04053.CrossRefGoogle ScholarPubMed
Enard, W., Gehre, S., Hammerschmidt, K., Hölter, S. M., Blass, T., Somel, M., Brückner, M. K., Schreiweis, C., Winter, C., Sohr, R., Becker, L., Wiebe, V. Nickel, B., Giger, T., Müller, U., Groszer, M., Adler, T., Aguilar, A., Bolle, I., Calzada-Wack, J., Dalke, C., Ehrhardt, N., Favor, J., Fuchs, H., Gailus-Durner, V., Hans, W., Hölzlwimmer, G., Javaheri, A., Kalaydjiev, S., Kallnik, M., Kling, E., Kunder, S., Mossbrugger, I., Naton, B., Racz, I., Rathkolb, B., Rozman, J., Schrewe, A., Busch, D. H., Graw, J., Ivandic, B., Klingenspor, M., Klopstock, T., Ollert, M., Quintanilla-Martinez, L., Schulz, H., Wolf, E., Wurst, W., Zimmer, A., Fisher, S. E., Morgenstern, R., Arendt, T., de Angelis, M. H., Fischer, J., Schwarz, J. & Pääbo, S. (2009) A humanized version of Foxp2 affects cortico-basal ganglia circuits in mice. Cell 137:961–71.Google Scholar
Graybiel, A. M. (1995) Building action repertoires: Memory and learning functions of the basal ganglia. Current Opinion in Neurobiology 5:733–41.CrossRefGoogle ScholarPubMed
Graybiel, A. M. (2008) Habits, rituals, and the evaluative brain. The Annual Review of Neuroscience 31:359–87. doi: 10.1146/annurev.neuro.29.051605.112851.Google Scholar
Grillner, S., Robertson, B. & Stephenson-Jones, M. (2013) The evolutionary origin of the vertebrate basal ganglia and its role in action selection. The Journal of Physiology 591(22):5425–31.CrossRefGoogle ScholarPubMed
Hills, T. T., Todd, P. M. & Goldstone, R. L. (2008) Search in external and internal spaces: Evidence for generalized cognitive search processes. Psychological Science 19(8):802808.Google Scholar
Hills, T. T., Todd, P. M., Lazer, D., Redish, A. D., Couzin, I. D. & the Cognitive Search Research Group* (*Bateson, M., Cools, R., Dukas, R., Giraldeau, L.-A., Macy, M. W., Page, S. E., Shiffrin, R. M., Stephens, D. W. & Wolfe, J. W.) (2015) Exploration versus exploitation in space, mind, and society. Trends in Cognitive Sciences 19(1):4654. doi: 10.1016/j.tics.2014.10.004.Google Scholar
Jin, X., Tecuapetla, F. & Costa, R. M. (2014) Basal ganglia subcircuits distinctively encode the parsing and concatenation of action sequences. Nature Neuroscience 17(3):423–34. doi: 10.1038/nn.3632.Google Scholar
Nordli, S. A. (2012) The evolutionary economics of learning: The lawful structure of habit formation and the computational capacity for recursion in behavior (Unpublished undergraduate thesis). School of Cognitive Science, Hampshire College, Amherst, MA. Available from Harold F. Johnson Library, Hampshire College.Google Scholar
Reiner, A. (2010) The conservative evolution of the vertebrate basal ganglia. In: Handbook of basal ganglia structure and function, ed. Steiner, H. & Tseng, K. Y., pp. 2962. Academic Press.CrossRefGoogle Scholar
Schreiweis, C., Bornschein, U., Burguière, E., Kerimoglu, C., Schreiter, S., Dannemann, M., Goyal, S., Rea, E., French, C. A., Puliyadi, R., Groszer, M., Fisher, S. E., Mundry, R., Winter, C., Hevers, W., Pääbo, S., Enard, W. & Graybiel, A. M. (2014) Humanized Foxp2 accelerates learning by enhancing transitions from declarative to procedural performance. Proceedings of the National Academy of Sciences USA 111(39):14253–58. doi: 10.1073/pnas.1414542111.Google Scholar
Smith, K. S. & Graybiel, A. M. (2016) Habit formation. Dialogues in Clinical Neuroscience 18(1):3343.Google Scholar
Stephens, D. W. & Krebs, J. R. (1986) Foraging theory. Princeton University Press.Google Scholar
Stephenson-Jones, M., Samuelsson, E., Ericsson, J., Robertson, B. & Grillner, S. (2011) Evolutionary conservation of the basal ganglia as a common vertebrate mechanism for action selection. Current Biology 21:1081–91. doi: 10.1016/j.cub.2011.05.001.CrossRefGoogle ScholarPubMed
Stocco, A., Lebiere, C. & Anderson, J. R. (2010) Conditional routing of information to the cortex: A model of the basal ganglia's role in cognitive coordination. Psychological Review 117(2):541–74. doi: 10.1037/a0019077.Google Scholar