No CrossRef data available.
Article contents
Habit formation generates secondary modules that emulate the efficiency of evolved behavior
Published online by Cambridge University Press: 15 August 2017
Abstract
We discuss the evolutionary implications of connections drawn between the authors' learned “secondary modules” and the habit-formation system that appears to be ubiquitous among vertebrates. Prior to any subsequent coevolution with social learning, we suggest that aspects of general intelligence likely arose in tandem with mechanisms of adaptive motor control that rely on basal ganglia circuitry.
- Type
- Open Peer Commentary
- Information
- Copyright
- Copyright © Cambridge University Press 2017
References
Aldridge, J. W., Berridge, K. C. & Rosen, A. R. (2004) Basal ganglia neural mechanisms of natural movement sequences. Canadian Journal of Physiology and Pharmacology
82:732–39. doi: 10.1139/Y04-061.CrossRefGoogle ScholarPubMed
Barnes, T. D., Kubota, Y., Hu, D., Jin, D. Z. & Graybiel, A. M. (2005) Activity of striatal neurons reflects dynamic encoding and recoding of procedural memories. Nature
437:1158–61. doi: 10.1038/nature04053.CrossRefGoogle ScholarPubMed
Enard, W., Gehre, S., Hammerschmidt, K., Hölter, S. M., Blass, T., Somel, M., Brückner, M. K., Schreiweis, C., Winter, C., Sohr, R., Becker, L., Wiebe, V.
Nickel, B., Giger, T., Müller, U., Groszer, M., Adler, T., Aguilar, A., Bolle, I., Calzada-Wack, J., Dalke, C., Ehrhardt, N., Favor, J., Fuchs, H., Gailus-Durner, V., Hans, W., Hölzlwimmer, G., Javaheri, A., Kalaydjiev, S., Kallnik, M., Kling, E., Kunder, S., Mossbrugger, I., Naton, B., Racz, I., Rathkolb, B., Rozman, J., Schrewe, A., Busch, D. H., Graw, J., Ivandic, B., Klingenspor, M., Klopstock, T., Ollert, M., Quintanilla-Martinez, L., Schulz, H., Wolf, E., Wurst, W., Zimmer, A., Fisher, S. E., Morgenstern, R., Arendt, T., de Angelis, M. H., Fischer, J., Schwarz, J. & Pääbo, S. (2009) A humanized version of Foxp2 affects cortico-basal ganglia circuits in mice. Cell
137:961–71.Google Scholar
Graybiel, A. M. (1995) Building action repertoires: Memory and learning functions of the basal ganglia. Current Opinion in Neurobiology
5:733–41.CrossRefGoogle ScholarPubMed
Graybiel, A. M. (2008) Habits, rituals, and the evaluative brain. The Annual Review of Neuroscience
31:359–87. doi: 10.1146/annurev.neuro.29.051605.112851.Google Scholar
Grillner, S., Robertson, B. & Stephenson-Jones, M. (2013) The evolutionary origin of the vertebrate basal ganglia and its role in action selection. The Journal of Physiology
591(22):5425–31.CrossRefGoogle ScholarPubMed
Hills, T. T., Todd, P. M. & Goldstone, R. L. (2008) Search in external and internal spaces: Evidence for generalized cognitive search processes. Psychological Science
19(8):802–808.Google Scholar
Hills, T. T., Todd, P. M., Lazer, D., Redish, A. D., Couzin, I. D. & the Cognitive Search Research Group* (*Bateson, M., Cools, R., Dukas, R., Giraldeau, L.-A., Macy, M. W., Page, S. E., Shiffrin, R. M., Stephens, D. W. & Wolfe, J. W.) (2015) Exploration versus exploitation in space, mind, and society. Trends in Cognitive Sciences
19(1):46–54. doi: 10.1016/j.tics.2014.10.004.Google Scholar
Jin, X., Tecuapetla, F. & Costa, R. M. (2014) Basal ganglia subcircuits distinctively encode the parsing and concatenation of action sequences. Nature Neuroscience
17(3):423–34. doi: 10.1038/nn.3632.Google Scholar
Nordli, S. A. (2012) The evolutionary economics of learning: The lawful structure of habit formation and the computational capacity for recursion in behavior (Unpublished undergraduate thesis). School of Cognitive Science, Hampshire College, Amherst, MA. Available from Harold F. Johnson Library, Hampshire College.Google Scholar
Reiner, A. (2010) The conservative evolution of the vertebrate basal ganglia. In: Handbook of basal ganglia structure and function, ed. Steiner, H. & Tseng, K. Y., pp. 29–62. Academic Press.CrossRefGoogle Scholar
Schreiweis, C., Bornschein, U., Burguière, E., Kerimoglu, C., Schreiter, S., Dannemann, M., Goyal, S., Rea, E., French, C. A., Puliyadi, R., Groszer, M., Fisher, S. E., Mundry, R., Winter, C., Hevers, W., Pääbo, S., Enard, W. & Graybiel, A. M. (2014) Humanized Foxp2 accelerates learning by enhancing transitions from declarative to procedural performance. Proceedings of the National Academy of Sciences USA
111(39):14253–58. doi: 10.1073/pnas.1414542111.Google Scholar
Smith, K. S. & Graybiel, A. M. (2016) Habit formation. Dialogues in Clinical Neuroscience
18(1):33–43.Google Scholar
Stephenson-Jones, M., Samuelsson, E., Ericsson, J., Robertson, B. & Grillner, S. (2011) Evolutionary conservation of the basal ganglia as a common vertebrate mechanism for action selection. Current Biology
21:1081–91. doi: 10.1016/j.cub.2011.05.001.CrossRefGoogle ScholarPubMed
Stocco, A., Lebiere, C. & Anderson, J. R. (2010) Conditional routing of information to the cortex: A model of the basal ganglia's role in cognitive coordination. Psychological Review
117(2):541–74. doi: 10.1037/a0019077.Google Scholar
Target article
The evolution of general intelligence
Related commentaries (28)
G and g: Two markers of a general cognitive ability, or none?
G but not g: In search of the evolutionary continuity of intelligence
A pointer's hypothesis of general intelligence evolved from domain-specific demands
An all-positive correlation matrix is not evidence of domain-general intelligence
Coexistence of general intelligence and specialized modules
Contemporary evolutionary psychology and the evolution of intelligence
Disentangling learning from knowing: Does associative learning ability underlie performances on cognitive test batteries?
Domains of generality
Evolution, brain size, and variations in intelligence
General intelligence does not help us understand cognitive evolution
General intelligence is a source of individual differences between species: Solving an anomaly
General intelligence is an emerging property, not an evolutionary puzzle
Genomic data can illuminate the architecture and evolution of cognitive abilities
Habit formation generates secondary modules that emulate the efficiency of evolved behavior
Hierarchy, multidomain modules, and the evolution of intelligence
It's time to move beyond the “Great Chain of Being”
Negative results are needed to show the specific value of a cultural explanation for g
Of mice and men, nature and nurture, and a few red herrings
Taking a multiple intelligences (MI) perspective
The evolution of analytic thought?
The evolution of fluid intelligence meets formative g
The evolution of general intelligence in all animals and machines
The false dichotomy of domain-specific versus domain-general cognition
Theory of mind: A foundational component of human general intelligence
Understanding the relationship between general intelligence and socio-cognitive abilities in humans
When does cultural transmission favour or instead substitute for general intelligence?
Where is the evidence for general intelligence in nonhuman animals?
“Birdbrains” should not be ignored in studying the evolution of g
Author response
Future directions for studying the evolution of general intelligence